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We performed five high resolution (2.8 km) decadal convection permitting scale (CPS) climate
simulations over Belgium using the COSMO-CLM regional climate model and examined the
future changes in daily precipitation extremes compared to coarser resolution simulations.
The CPS model underestimates the higher percentiles during both seasons, however, some
improvements in the higher percentile values are noticed during the summer season. Analysis
of three future climate simulations indicates that the CPS model modifies the future signals of

daily precipitation extremes compared to their forcing non-CPS simulations during summer.
During this season, the increase (decrease) in the daily precipitation extremes is stronger in
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the CPS compared to the non-CPS simulations. During winter, no significant changes between
CPS and non-CPS were found.
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I. Introduction

Extreme precipitation events largely influence soci-
ety and ecosystems through floods, drought, infras-
tructure damage and even human causalities (Tabari
et al., 2014). According to the Sth assessment report
(ARS) of the International Panel on Climate Change
(IPCC), the frequency and intensity of the precipita-
tion extremes are likely to increase in the future warmer
climate (IPCC, 2013). Understanding and quantifying
the magnitude and frequency of such extremes for both
the present-day climate and possible future climates is
therefore relevant. IPCC’s future climate projections are
generally based on coarser resolution (e.g. 150—200 km
or more) Global Climate Model simulations. Owing
to their coarse resolution, not all processes, notably
those occurring on mesoscales, are reasonably taken
into account. These limitations result in important mis-
representations of extreme precipitation (Willems et al.,
2012; Tabari et al., 2015).

To overcome this problem, Regional Climate Models
(RCMs) are frequently used to downscale the coarser
resolution global climate simulations to regional and
local scales. The RCMs are capable of providing
additional regional details such as an improved rep-
resentation of topographical features (e.g. mountains
and coastlines), land cover heterogeneity etc. (Chris-
tensen and Christensen, 2007; Prein et al., 2015).
The recent internationally coordinated projects, e.g.
PRUDENCE, ENSEMBLES and EURO-CORDEX
employed RCMs with horizontal resolutions of 50, 25

and 12 km, respectively (Christensen and Christensen,
2007; Mearns et al., 2009; Kotlarski ef al., 2014). Some
recent studies performed climate simulations even at
7km spatial resolution (Wagner et al., 2013). The
increasing model resolution, however, does not guaran-
tee a reduction of the model deficiencies and associated
biases compared to the observations. Some studies
(Clark et al., 2007; Walther et al., 2013) indicate that
the increasing model resolution does not improve the
representation of the precipitation diurnal cycle. This
problem has been solved partly by resolving deep
convection, a process that can be modeled in RCMs
with grid mesh size as fine as at least 2—4 km (Weisman
etal., 1997). Such high resolution RCM simulations
where deep convection is explicitly resolved are gen-
erally referred as convective permitting scale (CPS)
simulations. Previous studies (Kendon et al., 2012;
Prein et al., 2013; Ban et al., 2014; Fosser et al., 2014;
Brisson et al., 2016) showed that CPS models improve
the representation of the diurnal cycle of precipitation.
However, due to the high computational cost of CPS
models, the number of climate change impact studies
using such models is limited (Prein et al., 2015).

In most studies discussed above, the CPS model sim-
ulations are carried out to investigate their added value
in the present-day climate. Only few studies examined
future precipitation extremes in the CPS model simula-
tions (Kendon et al., 2014; Ban et al., 2015). The latter
two studies slightly disagree in their findings due to
use of different statistical methods (Schir et al., 2016).
Kendon et al. (2014) noticed a future intensification of
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short-duration rain in summer, with significantly more
events exceeding the high thresholds. Whereas, Ban
et al. (2015) showed that the extreme events are pro-
jected to become more frequent and more intense, but
not as pronounced as in some previous studies. Addi-
tional simulations are therefore needed to investigate
the reasons for diverging conclusions in these recent
studies. This study aims to fill this gap by performing
a set of present-day and future decadal CPS simula-
tions over Belgium. Among other issues, an important
question remains: how do high resolution CPS model
integrations modify the representation of future pre-
cipitation extremes compared to the non-CPS simula-
tions? The advantage of this study is that it relies on
three separate 10-year future climate simulations, which
makes it possible to study the robustness of the signals.
The article is organized as follows: The next section
gives an overview of the COSMO-CLM (CCLM) model
and the configuration of the CPS simulations. A brief
model evaluation and the simulated future changes in
the precipitation extremes are described in the Section
on Results and Discussions. The summary and conclu-
sions are presented in the last section.

2. Data and methodology

2.1. Model

This study uses the CCLM RCM, a non-hydrostatic
model based on the COSMO numerical weather pre-
diction model (Steppeler et al., 2003). Later on, the
model was adapted by the climate limited-area mod-
eling (CLM) community to perform both short- and
long-term climate integrations by adding specific mod-
ules such as dynamic surface boundaries, a more com-
plex soil model and the possibility to use various CO,
concentrations (Bohm et al., 2006; Rockel et al., 2008).
Following Brisson et al. (2016), here we adopt the
third order Runga-Kutta split-explicit time stepping
scheme (Wicker and Skamarock, 2002), the lower
boundary fluxes provided by the TERRA model (Doms
etal., 2011) and the radiative scheme after Ritter and
Geleyn (1992). In this respect, it is noted that the pre-
cipitation change might be adversely affected by some
deficiencies shortwave water vapor absorption in older
radiative transfer schemes (DeAngelis et al., 2015).

2.2. Experimental setup and methodology

The experimental setup in terms of model domains,
physical parameterizations etc. generally follows that
of Brisson et al. (2016). A three-step nesting strategy
(shown in Figure S1) has been applied in this study.
Five simulations are performed (Table S1). For sim-
plicity, here LTS refers to the long-term simulation
and the subscript represents the lateral boundary condi-
tions. The ERA-Interim reanalysis data and the global
EC-Earth model (Dee et al., 2011; Hazeleger et al.,
2012) provides the necessary initial and boundary con-
ditions to nest a 100x 100 grid points domain with
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Table I. Definition of indices used in this study.

Index Definition

Wet days Days for which daily precipitation exceeds 90th
percentile of reference period

Days for which daily precipitation exceeds 95th
percentile of reference period

Days for which daily precipitation exceeds 99th
percentile of reference period

The mean of the upper 5% of daily precipitation
intensities

Daily precipitation over a particular grid cell
exceeding 30 mm day™!

Daily precipitation over a particular grid cell
exceeding 60 mm day ™'

Very wet days
Extreme wet days
Heavy rainfall
Extreme event

Very extreme event

a 0.22° (approximately 25km) grid mesh size. The
resulting 3-h outputs are employed to nest a 0.0625°
(approximately 7 km) domain. Finally, the hourly out-
puts of the latter nest, characterized by 150 X 150 grid
points, are used as input for the 0.025° (approximately
2.8 km) simulation on a 192 X 175 grid points domain.
The added value of CPS can best be assessed when the
model is driven with ERA-Interim boundary conditions
(LTSgraqn)» as deficiencies in the EC-Earth model
might propagate into the regional model. The non-CPS
model with horizontal resolutions of 25 and 7 km does
not explicitly resolve deep convection and hence use the
convection scheme after Tiedtke (1989). Such param-
eterization is unnecessary in the CPS (2.8 km) model
setup where deep convection is dynamically resolved.

All simulations performed in this study employ 40
vertical levels. Observational data for daily accumu-
lated precipitation for 199 stations covering the full
simulation period (2001-2010) obtained from the
Royal Meteorological Institute (RMI) of Belgium
are employed to evaluate the model in present-day
climate. In the case of comparison with station data,
we extracted model information from the nearest grid
point. This method is commonly used for model and
station data comparison but it may introduce some
uncertainties as the model data are grid averaged
values whereas the station data present point values.
Several indices (Chan ef al., 2013; Ban et al., 2015)
that are used here are summarized in Table 1. The
precipitation percentiles are computed from continued
time series, which also includes dry days. To compare
data on different grids, the simulated datasets are first
regridded to 0.22° regular grid using conservative
first order regridding method. This regridding method
is more desirable than the bilinear interpolation for
discontinuous variables such as precipitation (Jones,
1999).

3. Results and discussions

3.1. Present-day analysis

Brisson et al. (2016) performed a detailed evaluation
of CCLM over Belgium driven with ERA-Interim
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Figure |. Future change in the wet, very wet and extreme wet days. The future changes are shown for Near Future (2026—-2035)
and Mid-Century (2060—-2069) with respect to the present-day (2001 -2010) period. In each case, the blue (red, green) lines show

the CPS (non-CPS) model simulations.

boundary conditions. In this study we extend this eval-
uation for present-day simulation driven by EC-Earth
boundary conditions (LTSgc g, Table S1). Table
S2 gives the mean and higher percentiles for winter
and summer for the set of present-day simulations
(LTSgram and LTSgc pan)- Note that, due to the
sparse network of station data it was not possible to
aggregate the observations to a grid. The model data is
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not area averaged, it just consists of all points and dates
for which there exists a station in the RMI database.
Compared to the observations the CPS model under-
estimates the higher percentiles during both seasons,
however, some improvements in the higher percentile
values are noticed during the summer season. This
is especially evident for the LTSggy .y, run. For the
LTSgc pan, Simulation, the CPS model does not show
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Figure 2. Future change in heavy precipitation (mmday~') during winter season. Similar to Figure |, the future changes are
computed for Near Future (2026—2035) and Mid-Century (2060—2069) with respect to the present-day (2001—-2010) period.
The left two panels show future changes for the non-CPS model simulations whereas the right panel show the future changes
for CPS model simulations. The model resolutions are shown on the top of panel. The dotted areas indicate differences that are

significant at 99% confidence level based on t-test.

marked improvements or deteriorations compared to
the non-CPS simulations, at least not on a daily time
scale.

3.2. Future simulation of extreme precipitation
over Belgium

The main aim of this article is to investigate the CPS
model response to increasing greenhouse gas forcing
compared to non-CPS models. We therefore first exam-
ine the future change in number of simulated wet, very
wet and extreme wet days as defined in Table 1. For
this purpose, we computed for each grid cell the change
in number of days for each category between the future
and the present-day. We then constructed a sample
consisting of these change values for each grid cell. In
the final step, we examined the spatial distribution of
future change in wet, very wet and extreme wet days
(Figure 1). The most robust signal is found for extreme
wet days where all three CPS simulations show an
amplification of the future signals for both seasons
compared to the non-CPS simulations (Figures 1(e)
and (f)). During the summer season, the extreme wet
days show a wider distribution in the CPS model sim-
ulations (Figure 1(f)). In this season, the enhancement

© 2016 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd
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(reduction) in the future extreme wet days is more
pronounced in all three CPS simulations compared
to the non-CPS simulations. Note that the CPS
model simulations also reveal a slight reduction in
number of future wet and very wet days compared
to the non-CPS simulations during both seasons
(Figures 1(a)—(d)).

We further examine the intensity of future change in
the heavy rainfall. During the winter season, both the
CPS and non-CPS model simulations reveal a similar
future change in the spatial distribution of heavy rainfall
intensity over Belgium (Figure 2). Although, the area
showing negative future change in heavy rainfall in the
non-CPS model (Figures 2(a), (b), (d), (e), (g) and (h))
diminishes in the CPS model simulations (Figures 2(c),
(f) and (1)), the difference between CPS and non-CPS is
marginal during winter.

During summer, the CPS model simulations show
amplification in the future signals of the heavy rain-
fall over Belgium compared to the non-CPS model
simulations (Figures 3 and 4). Significant differences
between CPS and non-CPS are found over some regions
where precipitation increase (decrease) is stronger in
the CPS compared to non-CPS simulations. However,
some grid cells display minor changes in the simulated

Atmos. Sci. Let. 18:29-36 (2017)
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Figure 3. Same as Figure 2, but for summer season. The dotted areas indicate differences that are significant at 99% confidence

level based on t-test.

patterns between CPS and non-CPS during the summer
season (Figure 4). Based on the #-test, the regression
coefficients for all these three simulations are signifi-
cantly (99% level) different from one, hence rejecting
the null hypothesis that both CPS and non-CPS have the
same changes in heavy rainfall (Figure 4). Moreover,
the slope of the regression lines between CPS (x-axis)
and non-CPS (y-axis) is significantly (99% level) lower
than 1 for all three simulations, indicates that the ampli-
tude of the change, whether positive or negative, is
significantly larger in CPS compared to the non-CPS
(Figure 4).

We further examined the extreme and very extreme
precipitation events (Table 1) by analyzing a cumu-
lative distribution of the daily rainfall over Belgium
(Figure 5). Each day and grid cell is treated as a
sample of the distribution, so in total, the sample
consists of the grid points in the analysis domain (198)
multiplied with the number of days in the simulation
(902 for winter and 920 for summer, yielding 178 596
values for winter and 182 160 values for summer).
The cumulative distribution is plotted only for that
part of the sample with daily rainfall rates above the
threshold (30 and 60 mmday~' respectively for very
wet and extreme wet days). The upper limit of the
precipitation imposed to define the daily extreme and

© 2016 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd
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Figure 4. Scatter plot between CPS and non-CPS (25 km) sim-
ulated future change signal of heavy rainfall (mm day~') averaged
over all summer seasons. Each dot in the scatter plot refers to
a model grid cell. The blue, green and red dots show the change
for Near Future, Mid-Centgpy 5 and Mid-Centgpg 5 simulations.
The dashed blue, green and red lines indicate the regression lines
for above three simulations respectively. The solid black line rep-
resents the (I : 1) line. The correlation coefficients between CPS
and non-CPS future change signals are significant to 95% level in
all three cases and are shown in the lower left corner of the
panel.
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Figure 5. Cumulative distribution of the simulated daily precipitation extreme (a and c) and very extreme (b and d) events
(mm day~") over Belgium during winter (a and b) and summer (c and d). The climate simulations performed in this study (Table SI)
are represented by the solid, dashed, dotted and dot-dashed lines. In all cases, the blue (red, green) lines show the CPS (non-CPS)

simulations.

very extreme events (in this case) is subjective and a
small variation in this limit does not affect the overall
results (not shown). During the winter season, neither
CPS nor non-CPS simulations show robust signals
between all three future simulations at grid cell scale
(Figures 5(a) and (b)). However, during summer, both
the frequency and intensity of the daily precipita-
tion extremes covering a grid cell area also increase
notably in the CPS simulations compared to the forcing
non-CPS simulations (Figures 5(c) and (d)). Note that
very high extremes are reached only in a very limited
number of cases, while lower intensities are exceeded
more frequently. The Near Future (Mid-Cent RCP4.5
and RCP8.5) CPS simulation has more (less) extreme
compared to the present-day CPS (Figure 5(c)). We
do not know the exact reason for this but since the last
two simulations cover a different decade (2060—2069),
there might be some decadal climate variability in
the global model simulations that influence the RCM
simulation results. However, for very extreme events
(Figure 5(d)), there is clear amplification in the future
signals in all cases compared to the present-day CPS
simulation.
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4. Summary and conclusions

The sensitivity of the future precipitation extremes on
the daily time scale have been compared between the
CPS simulations and their forcing non-CPS simula-
tions. For this purpose, we performed five decadal high
resolution (2.8 km) convection permitting scale (CPS)
climate simulation over Belgium using the CCLM
RCM. A detailed evaluation of the CCLM has been car-
ried out by Brisson et al. (2016). This follow-up study
assesses how the high resolution CPS model integra-
tions may modify future signals of the daily precipita-
tion extremes over Belgium compared to their forcing
non-CPS simulations.

The analysis of three future simulations over Bel-
gium with reference to the present-day climate reveals
an amplification of the future daily precipitation
extremes in the CPS simulations compared to the
non-CPS simulations, both in frequency and intensity.
This amplification is larger during the summer sea-
son. During winter, the difference between CPS and
non-CPS is marginal. On the other hand, during the
summer season, some regions where daily precipitation

Atmos. Sci. Let. 18:29-36 (2017)
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extremes increase (decrease) in the forcing non-CPS
simulations, they increase (decrease) more in the CPS
simulations.
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