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Key Points 18 

 A new methodology for evaluating the biogeophysical climate impact of LUC in 19 

climate models is presented. 20 

 This methodology is applied to a state of the art regional climate model. 21 

 The main model biases in simulating observed LUC related mechanisms are 22 

identified. 23 

Abstract 24 

In this study, we present a new methodology for evaluating the biogeophysical impact of land 25 

use change (LUC) in climate models. For this, we use observational data from paired eddy 26 

covariance flux towers in Europe, representing a LUC from forest to open land 27 

(deforestation). Two model simulations with a regional climate model (COSMO-CLM
2
) are 28 

performed which differ only in prescribed land use for site pair locations. The model is 29 

evaluated by comparing the observed and simulated difference in surface temperature (Ts) 30 

between open land and forests. Next, we identify the biogeophysical mechanisms responsible 31 

for Ts differences by applying a Ts decomposition method to both observations and model 32 

simulations, allowing us us to determine which LUC related mechanisms were well 33 

represented in COSMO-CLM
2
, and which were not. Results show that deforestation leads to a 34 

significant cooling at night, which is severely underestimated by COSMO-CLM
2
. It appears 35 

the model is missing one crucial impact of deforestation on the nighttime surface energy 36 

budget: a reduction in downwelling longwave radiation. Results are better for daytime, as the 37 

model is able to simulate the increase in albedo and associated surface cooling following 38 

deforestation reasonably well. Also well simulated, albeit underestimated slightly, is the 39 

overall decrease in sensible heat flux caused by reduced surface roughness. Overall, these 40 

results stress the importance of differentiating between daytime and nighttime climate when 41 

discussing the effect of LUC on climate. Finally, we believe they provide new insights 42 

supporting a wider application of the methodology (to other regional climate models). 43 

 44 
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1 Introduction 49 

Research has shown that land use change (LUC) can have a significant biogeophysical impact 50 

on climate in the regions in which it occurs [Bonan, 2008; Bala et al., 2007; Davin and de 51 

Noblet-Ducoudré, 2010; Mahmood et al., 2014], and if large enough, may cause global effects 52 

[Werth and Avissar, 2002; Werth and Avissar, 2005; Hasler et al., 2009; Medvigy et al., 53 

2013]. It is therefore essential that the biogeophysical impact of LUC is modeled correctly in 54 

climate models. Currently, modelers rely mostly on standalone usage of land surface models 55 

(LSM’s) to evaluate performance over different land use types (e.g. [Viterbo and Beljaars, 56 

1995; van den Hurk et al., 2000; Krinner et al., 2005; Abramowitz et al., 2008; Lauwaet et al., 57 

2008; Stöckli et al., 2008; Akkermans et al., 2012; Demuzere et al., 2013]). In standalone or 58 

so-called offline runs, the LSM is uncoupled from the climate model’s atmospheric 59 

component and is instead driven by local measured atmospheric conditions (e.g. incoming 60 

shortwave and longwave radiation, atmospheric temperature and humidity, etc.) in single 61 

grid-cell mode. Model performance is then evaluated by comparing the LSM’s response to 62 

this prescribed atmosphere (sensible heat flux, latent heat flux, bowen ratio, soil moisture, 63 

etc.) to the measured response. This exercise is usually repeated for a series of different land 64 

use types. 65 

Although this method of evaluating is useful and necessary, it does not, by itself, represent a 66 

complete evaluation of LUC effects in climate models. First, the model’s ability to simulate 67 

the impact of a transition in land use is not evaluated directly. Rather, it is implicitly assumed 68 

that if the LSM simulates the surface climatology of two distinct land use types adequately, it 69 

is able to simulate the impact of a transition in land use between these two types as well. 70 

However, acceptable model biases in the surface climatology for two land use types could still 71 

result in an unacceptably large bias in the modeled difference. Second, offline runs do not 72 

account for surface-atmosphere feedbacks, while model inter-comparison studies have shown 73 

that these indirect LUC effects are important drivers in various current generation climate 74 

models [Boisier et al., 2012; Boisier et al., 2013]. 75 

It is therefore important, in addition to offline LSM evaluation efforts, to evaluate the impact 76 

of LUC in coupled land-atmosphere climate models. The need for such evaluation is further 77 

underscored by a recent model inter-comparison project called LUCID (Project Land-Use and 78 

Climate, Identification of Robust Impacts) [Pitman et al., 2009]. In this project, seven climate 79 

models are used to simulate the biogeophysical impact of historic forest clearing (from 80 

preindustrial to present day times), using global simulations. Results for temperature are 81 
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relatively consistent, with all but one out of seven models simulating a cooling in the northern 82 

hemisphere. Furthermore, all seven models simulate a decrease in available energy due to 83 

increased albedo [Boisier et al., 2012]. However, the climate models disagree substantially on 84 

how the surface responds to this energy deficit. Although all models simulate a decrease in 85 

the sum of turbulent fluxes, the amount varies. The decrease in turbulent fluxes is higher in 86 

magnitude than the increase in albedo for some models and lower for others [de Noblet-87 

Ducoudré et al., 2012]. Also, models disagree substantially on the partitioning of the decrease 88 

in turbulent fluxes over latent and sensible heat. For example, despite the decrease in 89 

available energy, three models simulate an increase in summer latent heat flux for the 90 

northern hemisphere, while the others simulate the opposite response [Pitman et al., 2009]. 91 

Several aspects of the impact of LUC in coupled land-atmosphere climate models have 92 

recently been evaluated. For example, the changes in albedo (Boisier et al., 2013) and 93 

evapotranspiration (ET) [Boisier et al., 2014] modeled in the LUCID simulations were 94 

compared to reconstructed change maps by Boisier et al. For albedo, Boisier et al [2013] were 95 

able to determine if the bias of individual ensemble members was due to a bias in the extent 96 

of simulated snow cover or due to a bias in how both snow surface albedo and vegetated 97 

surface albedo was parameterized. The parameterization was shown to be more important 98 

than the snow cover extent. For ET, the model ensemble was shown to underestimate the 99 

decrease since preindustrial times [Boisier et al., 2014]. However, uncertainty on the 100 

reconstructed ET decrease was reported to be high, due in part to the uncertainty in the 101 

observational ET datasets, but also due to a large dependency on the adopted land-use map. 102 

Moreover, preindustrial ET values were derived using present day data for the environmental 103 

drivers (precipitation, radiation, etc.), so potential atmospheric feedbacks were not accounted 104 

for [Boisier et al., 2014]. Also, it is worth noting that both of these evaluation studies focus on 105 

evaluating climate models using observational data for only one surface energy budget 106 

component at a time. 107 

In addition, existing studies that evaluate the impact of LUC in coupled land-atmosphere 108 

climate models rarely distinguish between daytime and nighttime climate, instead limiting the 109 

analysis to daily means. However, large differences in physical properties exist between the 110 

convective and nocturnal planetary boundary layer. Therefore, it is likely that the response to 111 

LUC differs significantly between day and night. Furthermore, studies have detected a 112 

disproportionate nocturnal contribution to near surface warming in historic surface 113 

temperature records [Karl et al., 1993; Vose, Easterling, and Gleason, 2005; Nair et al., 114 
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2011]. Possible responsible factors include tropospheric aerosols, greenhouse gases and 115 

clouds. LUC has been proposed as a possible factor as well [Zhou et al., 2007]. It is therefore 116 

worthwhile to investigate if LUC has an impact on nighttime climate, and whether that impact 117 

is to dampen or enhance recent warming. If done using modeling studies, this means that 118 

climate models should be evaluated specifically for their ability to model the nighttime impact 119 

of LUC. 120 

In this study, we present a new method for evaluating a climate model’s ability to simulate the 121 

impact of LUC which extends above mentioned studies to a simultaneous evaluation of the 122 

impact of LUC on all surface energy budget components in a coupled land-atmosphere 123 

climate model. Our methodology consists of (1) a direct evaluation of the differences in 124 

surface climate instead of evaluating land use types separately, (2) online model simulations 125 

which account for atmospheric feedbacks, (3) a separate analysis of daytime and nighttime 126 

climate, (4) a simultaneous evaluation of all surface energy budget components and (5) an 127 

evaluation of the models capacity to reproduce the underlying processes following a LUC. 128 

Next, we apply this new methodology to a state of the art regional climate model. 129 

2 Methods and materials 130 

2.1 Observational data 131 

The term land use change incorporates many possible transitions. Examples are forest clearing 132 

for wood production and/or agricultural use, reforestation of former agricultural areas, the 133 

conversion of natural grasslands to irrigated agriculture and (sub)urbanization. To 134 

demonstrate the methods, we focus on the climate impact of deforestation over Europe and 135 

deforestation as the transition from forest to open land. 136 

Instead of selecting individual sites representing a variety of land use types, which would be 137 

the starting point of a more typical evaluation, we selected sites where an open land flux 138 

tower and a forest tower are located in close proximity. When located sufficiently close to 139 

each other, one can assume these site pairs share the same background climate conditions and 140 

ideally even the same weather, for example, timing of particular events, occurrence of heat-141 

waves, and extreme precipitation. Therefore, any differences in surface climate conditions 142 

between the two sites constituting a site pair (e.g. 2 meter air temperature, evapotranspiration, 143 

sensible heat flux) can be attributed to the difference in land use. 144 

In order for observational sites to be selected, they have to 1) be located in the study domain, 145 

i.e., Europe, 2) consist of a forested site and an open land site which could be either a 146 
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cropland or a grassland, 3) be located less than 35 km apart from each other. The 35 km was 147 

chosen in accordance with the spatial resolution of the model (see section 2.2), 4) have a 148 

common measurement period of at least one year, and finally, 5) have at least measurements 149 

of 2m air temperature, net radiation, latent heat and sensible heat fluxes. 150 

In total, 14 sites in the FLUXNET database match these criteria, and were subsequently 151 

combined in seven site pairs (Table 1 and Figure 1). The vegetation at the selected sites 152 

ranges from temperate, continental to subtropical-mediterranean, and contains diverse 153 

management regimes with the most common being yearly cutting for most of the meadows 154 

and occasional thinning at the forested sites. The forested sites include both deciduous and 155 

coniferous tree species. 156 

The average linear distance between sites within a pair is 11.3 km; the average latitudinal 157 

distance between sites is 6.0 km. These values are in line with the average distances reported 158 

by other studies that use site pairs to study the impact of LUC [Lee et al., 2011; Baldocchi et 159 

al., 2013; Luyssaert et al., 2014; Zhang et al., 2014]. Elevation differences within a pair range 160 

from minor, i.e., the height difference between the site pairs in clusters DK1, DE1, CZ1, ES1 161 

and PT1 is limited to 100 m or less to relatively large, i.e., Collelongo is located almost 700 162 

meters higher than Amplero, which are the two sites which form site pair IT1. 163 

2.2 Models 164 

The regional climate simulations analyzed in this study are performed with the COSMO-165 

CLM
2
 model [Davin et al., 2011; Davin & Seneviratne, 2012]. COSMO-CLM

2
 couples the 166 

atmospheric component of the regional climate model COSMO-CLM (version 4.8) to the 167 

Community Land Model version 3.5 (CLM3.5), the land surface component of the 168 

Community Earth System Model (CESM). COSMO-CLM 4.8 thus differs from the standard 169 

COSMO-CLM by replacing the relatively simple land surface component included in the 170 

model with the more comprehensive CLM 3.5.  171 

Model evaluations show that the standard version of COSMO-CLM 4.8 meets all 172 

requirements to qualify as a state of the art regional climate model [Keuler, Radtke, and 173 

Georgievski, 2012; Kotlarski et al., 2014; Vautard et al., 2013]. It has been used extensively 174 

over Europe for both regional climate modeling and numerical weather prediction [Feldmann 175 

et al., 2013; Lauwaet et al., 2013; Baldauf et al., 2011], and has been applied to other major 176 

world regions as well [Dosio et al., 2014; Asharaf and Ahrens, 2013; Kothe, Lüthi, and 177 

Ahrens, 2014; Nikulin et al., 2012]. A recent model inter-comparison study performed for a 178 
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European model domain has shown that, compared to standard COSMO-CLM, COSMO-179 

CLM
2
 improves performance for several climate variables, including cloud cover, surface 180 

temperature and precipitation. The main factor explaining these performance improvements is 181 

a better partitioning of turbulent fluxes [Davin et al., 2011; Davin and Seneviratne, 2012]. 182 

Both simulations were integrated using a horizontal resolution of 0.22° (~25km), a vertical 183 

resolution of 32 pressure levels and a 120s time step. The model grid covers all of Western 184 

Europe (Figure 1) and consists of 170 x 180 pixels in respectively latitude and longitude. Both 185 

simulations were integrated from 1 July 2002 to 1 January 2009, a time period which covers 186 

the available observations and includes a 6 month spinup period before the first available 187 

measurement year (2003). Initial and boundary conditions were derived from ERA-Interim 188 

Reanalysis data. 189 

2.3 Model Experiment 190 

In this study, the model experiment required two simulations. In the first simulation (the 191 

“forest” simulation), the seven pixels matching the seven locations of the observational pairs 192 

were prescribed as forest. In the second simulation (the “open land” simulation), the same 193 

seven pixels were set to grassland or crop depending on the surface above which the 194 

FLUXNET mast was installed.  195 

When doing a standard simulation with CLM3.5, values that describe the land surface are 196 

derived from input datasets [Lawrence and Chase, 2007]. Surface input variables required for 197 

CLM3.5 include plant functional type (PFT), canopy top and bottom height, leaf area index 198 

(LAI), stem area index (SAI), soil color and soil texture. For this study, three of these input 199 

variables were adapted to local measurement site conditions: PFT, canopy top height and LAI. 200 

Values for these adaptations are summarized in Table 2. First, for PFT, one in four options 201 

was chosen depending on land use (forest or open land) and dominant tree species: needleleaf 202 

evergreen tree – temperate or broadleaf deciduous tree – temperate on the forest side and C3 203 

grass or crop on the open land side. Second, the input variable canopy top height was adapted 204 

to the observational sites for the forest simulation only. For the open land simulation, the 205 

standard CLM3.5 value for grassland and cropland of 0.5 m was used. Finally, CLM3.5 uses a 206 

yearly cycle of LAI which is updated daily by interpolating between monthly values [Oleson 207 

et al., 2004]. For the forest sites, these monthly LAI values were adjusted to match the local 208 

site conditions more closely. 209 

2.4 Data processing 210 
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The observational datasets were downloaded from the European Fluxes Database Cluster 211 

(http://www.europe-fluxdata.eu/). For this study, level 2 data products were used throughout. 212 

These data products provide values on a half-hourly timescale, and are quality checked by the 213 

site PI, but have not been through any gapfilling. Further data processing was required for the 214 

aims of this study. For all variables three subsets were created. One subset containing daily 215 

mean values, another containing the daytime mean and the last subset containing nighttime 216 

mean values. This approach enabled separately studying nighttime and daytime climate as 217 

well as evaluating the effect when this distinction is not made and daily means are used 218 

instead.  219 

For the daily mean subset, a mean daily value was calculated for every variable from the half-220 

hourly level 2 product. Days with measurement gaps longer than 3 hours were removed from 221 

the dataset. For the daytime mean subset, a mean daily value was calculated for all 222 

observation from 12:00 to 15:00 UTC. If one of the 6 half-hourly measurements within this 223 

window was missing, the whole day was omitted from the daytime mean subset. A similar 224 

procedure was used to calculate the nighttime subset, except here, the 00:00 to 03:00 UTC 225 

time window was used. All of the following data processing steps were performed on these 226 

three subsets: 227 

(1) Albedo and surface emissivity were calculated for sites with separate measurements for 228 

incoming and outgoing shortwave and longwave radiation. Surface albedo (αs) was 229 

determined by computing the ratio between outgoing and incoming shortwave radiation for 230 

the daytime mean subset (12:00-15:00 UTC). Next, surface emissivity εs was derived from 231 

surface albedo using a simple linear equation (               ). This empirical 232 

relationship was derived from literature reported values of albedo and emissivity [Juang et al., 233 

2007]. 234 

(2) For sites with separate measurements for incoming and outgoing longwave radiation, 235 

radiative surface temperature (Ts) was derived from outgoing longwave (LWout) using Stefan 236 

Boltzman’s equation (           
 ). 237 

(3) Observed energy budgets are rarely closed and imbalances of up to 20% of available 238 

energy are common [Wilson et al., 2002]. It has been suggested that one of the most 239 

prominent sources for this imbalance is an underestimation of the turbulent fluxes , caused by 240 

the fact that the eddy-covariance method tends to miss or underestimate large scale eddies 241 

[Foken, 2008]. Therefore, the surface energy budget was closed by redistributing the 242 
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imbalance term (incoming terms minus outgoing terms) to sensible and latent heat, with the 243 

fraction of the imbalance allocated to each term determined by the measured Bowen ratio 244 

(relative proportion of sensible to latent heat).Note that this means we assume the Bowen 245 

ratios for small and large scale eddies are similar. Although this might not hold in all cases 246 

[Ruppert et al., 2006], the redistribution of the imbalance based on Bowen ratio is the only 247 

method easily applicable to our observational dataset. 248 

(4) As we aim to compare the climatology of nearby sites, the difference between the values 249 

observed at the forest site and the nearby open land site were calculated. We chose to subtract 250 

the forest site value from the open land value, so the calculated difference value therefore 251 

reflects the change associated with deforestation. The output data from our model simulations 252 

was processed in a similar fashion with the sole exception that by conception the energy 253 

budget of COSMO-CLM
2
 is closed and no imbalance correction (see step (3)) was required. 254 

2.5 Decomposition of surface temperature change 255 

To decompose the observed change in radiative surface temperature (Ts) between forested 256 

and open land sites, the method originally developed by Juang et al. [2007] was used. This 257 

method has been refined [Luyssaert et al., 2014] and subsequently been applied by others 258 

[Luyssaert et al., 2014; Akkermans et al., 2014; Thiery et al., 2015]. The decomposition uses 259 

the basic surface energy budget equation as its starting point: 260 

     
                                  

By reordering the equation and performing a first order derivative, the decomposition 261 

equation for δTs or the difference in surface temperature between two sites is obtained: 262 

    
 

     
 
                                            

             

   1  2          3          4       5       6        7         8 263 

This equation is then applied to our site pairs, which reflect a local land use transition from 264 

forest to open land. Using the equation, we can attribute the change in surface temperature to 265 

eight factors: 266 

1. Albedo (αs). A positive value implies that the open land site is darker than the forest, and 267 

therefore, absorbs a larger fraction of the incident solar radiation. 268 

2. Incoming shortwave radiation (SWin). A positive value implies that the incoming 269 

shortwave radiation is higher over the open land site. Possible mechanisms could be 270 
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feedbacks including changes in atmospheric moisture, atmospheric aerosol loading, cloud 271 

cover, etc. 272 

3. Incoming longwave radiation (LWin). A positive value implies that the incoming longwave 273 

radiation is higher over the open land site. Possible mechanisms could be changes in cloud 274 

cover, atmospheric aerosol loading, water vapor loading in the lower boundary layer, etc. 275 

4. Latent heat flux (LE). A positive value implies that the latent heat flux, and therefore, the 276 

evaporative cooling of the surface, is lower for the open land site. 277 

5. Sensible heat flux (H). A positive value implies a reduction in convective surface cooling. 278 

6. Ground flux (G). A positive value implies reduced soil heat storage. 279 

7. The imbalance term (I). The imbalance term accounts for the imbalance as discussed above 280 

as well for the omission of minor components of the energy budget such as heat storage in 281 

biomass, heat storage in sub-canopy air mass and energy used in photosynthesis. Ideally, this 282 

component should approach zero, but for observational data, this is almost never the case. 283 

8. The thermal emissivity of the surface (εs). A positive value implies an increase in the 284 

surface emission of longwave radiation due to an increase in emissivity, with the surface more 285 

closely resembling a black-body radiation. 286 

For the observational data subsets, the surface temperature decomposition equation was 287 

applied twice: once using the original uncorrected values for sensible and latent heat, and then 288 

again using the values corrected for imbalance. The differences between these values can be 289 

interpreted as a measure of the uncertainty related to measuring turbulent fluxes. 290 

Applying the equation to both observations and modeled site pairs results in a daily value for 291 

δTs, calculated from the observed and modeled differences in all surface energy budget 292 

components. For COSMO-CLM
2
, this calculated value matches the actual daily mean δTs 293 

value closely across the board. However, this is not the case when the surface temperature 294 

decomposition equation is applied to our observational site pairs. Here, large discrepancies 295 

exist between calculated and observed δTs reflecting uncertainties in the measurements. 296 

Consequently, we can use the difference between the calculated and the observed value of δTs 297 

as an estimate for data reliability. 298 

As mentioned earlier, a surface energy budget closure imbalance of about 20% of available 299 

energy is common in measurements [Wilson et al., 2002]. For our site pairs, this corresponds 300 

to an imbalance of about 11 Wm
-2

, or 2 K when translated to temperature using equation 2. 301 
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Therefore, 2 K was chosen as a cutoff value for calculated minus observed δTs (δTscalc- 302 

δTsobs). Days where (δTscalc- δTsobs) is lower than this cutoff value are deemed reliable, 303 

days that do not meet this criterion are not. This data reliability measure was applied 304 

separately to all three data subsets created for our observational site pairs. For a site pair, at 305 

least 25% of the days for which the decomposition method was applied had to pass the 2 K 306 

threshold to be included in the final data set. 307 

2.6 Data availability and quality 308 

Despite the length of the time series, our additional criteria to data quality and availability 309 

(see section 2.5) considerably reduced the size of the data (Table 3). For example, for the CZ1 310 

site pair, 3 years of common measurements are available. However, only 38 percent of days 311 

within this common measurement period have Ta measurements for both sites within the site 312 

pair. 313 

LWout is an important variable because it is essential in calculating surface temperature (Ts). 314 

Since we use the difference between the calculated and the observed value of Ts as a measure 315 

for data reliability, this means that site pairs with no common measurements of LWout cannot 316 

pass our reliability test. For most site pairs, however, LWout is the variable with the least 317 

consistent coverage, and thus the most limiting. Two pairs (PT1 and ES1) out of seven have 318 

no common LWout measurements at any time. For two other pairs (IT1 and CZ1) common 319 

measurements of LWout are mostly restricted to summer. Coverages of ~40%, ~80%, and, 320 

~95% respectively, make DK1, DE1 and IT2 the only three pairs remaining for the core of the 321 

analysis. Site pairs DE1 and DK1 have the highest fraction, i.e. 55 to 75% of reliable 322 

measurements (Figure 2), where reliability is calculated as the number of days for which 323 

(δTscalc- δTsobs) is less than +/- 2 K. For the IT2 site pair, data reliability is lower overall, 324 

and less consistent across time of day. 325 

A possible reason for the lower fraction of reliable site comparisons at site pairs IT2 is the 326 

substantial elevation difference of the sites within this pairs. For IT2, the open land site is 327 

located 210 meters higher than the forest site. Whereas, height differences for DE1 and DK1 328 

are only 100 and 30m, respectively.  329 

It is, however, worth noting that despite the low percentages of high quality data, sample size 330 

is adequate for our purpose thanks to the relatively high number of years with common 331 

measurements for these site pairs. The daily mean reliable year-round subset, for example, 332 

still contains 1570 days when summed across site pairs 1-3. The lowest absolute number of 333 
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days can be found in the summer daytime mean subset, which still contains 243 entries (Table 334 

3). 335 

3 Results 336 

3.1 Difference in temperature 337 

The yearly mean daytime difference in air temperature (δTa, with Ta typically measured 338 

approximately 2 m above the vegetation canopy) does not differ significantly from zero (p = 339 

0.71), being equal to about 0.02 K (Figure 3). Note that these values are uncorrected for the 340 

height difference between the sites within pairs. Based on a possible lapse rate range of 5.5 - 341 

10 K/km, we calculated a weighted average δT due to height difference of -0.53 to -0.96 K. In 342 

the subsequent analysis, δT values in the 0 to -0.96 K range should therefore be considered to 343 

be insignificant from zero. The daytime δTa due to deforestation is simulated reasonably well 344 

by COSMO-CLM
2
: agreement is strong, with the model replicating the observed seasonal 345 

cycle almost perfectly (Pearson correlation, 0.94). The difference in daytime Ts is 346 

characterized by a strong seasonal signal: in winter, δTs for open land sites is cooler by about 347 

1.5 K, while in spring and summer, open land sites are warmer by up to 3 K. Summer 348 

warming is stronger and longer in duration, dominating the yearly mean daytime δTs signal. 349 

The model produces a seasonal pattern similar to observations: open land sites are cooler than 350 

forests in winter and warmer in summer. COSMO-CLM
2
 does somewhat underestimate the 351 

magnitude of summer open land warming. 352 

Moving on to nighttime, yearly mean nighttime δTa equals about -1.3 K, suggesting that the 353 

atmosphere above open land is cooler than above forest with minimal seasonal variation. 354 

COSMO-CLM
2
 does not succeed at simulating this observed nighttime δTa, overestimating 355 

yearly mean nighttime δTa by about 1.5 K. The difference in nighttime δTs does show 356 

seasonal variation: in winter open land site Ts is lower by up to 5.5 K while in late summer 357 

and fall, open land sites are still cooler but the difference is reduced to 2.5 K. It is worth 358 

noting, however, that the seasonal amplitude in nighttime δTs is significantly smaller for the 359 

dataset containing all data. Still, the fact that open land sites are cooler during nighttime than 360 

nearby forests is robust across pairs. Similar to nighttime δTa, COSMO-CLM
2
 does a poor 361 

job in simulating the observed nighttime δTs with a bias of 4K between the simulated and 362 

observed values. These nighttime biases are large enough to reverse the sign of nighttime δTs 363 

compared to the observations: unlike in the observations, in our COSMO-CLM
2
 simulations, 364 

open land sites are warmer than forests at night, especially in spring. 365 
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Finally, daily mean δTa hovers at around -0.8 K, with little to no seasonal variation. It is 366 

driven primarily by the difference in nighttime temperature, which is considerably higher in 367 

magnitude than the observed daytime temperature difference. COSMO-CLM
2
 overestimates 368 

daily mean δTa by about 0.5 K due to the δTa overestimation at night. Daily mean δTs is also 369 

negative year round. Its seasonal signal (about -3.5 K in winter, close to zero in summer) is 370 

determined mostly by daytime δTs, while its sign (negative year round) is determined mostly 371 

by nighttime δTs. In COSMO-CLM
2
, daily mean δTs is overestimated by about 2K, again 372 

mainly because of the nighttime bias. 373 

3.2 Surface temperature change decomposition 374 

3.2.1 Daytime/ summer 375 

Using the δTs decomposition equation, changes in Ts were attributed to changes in the 376 

components of the surface energy budget (Figure 4). For summer days, the difference in 377 

albedo between open land and forested sites appears to be a dominant factor in changes in 378 

surface temperature. Albedo is higher for open land sites, where the difference in albedo was 379 

estimated to be equivalent to a δTs of -6 K. This difference is modeled accurately by 380 

COSMO-CLM
2
 in both sign and magnitude (Figure 4a). For the observed pairs, summer days 381 

are thus characterized by a lower net radiation (Rnet) at the open site compared to the forest. 382 

However, the surface responds to deforestation by simultaneously reducing the sensible heat 383 

flux (H), a reduction which, if isolated, would cause a surface heating of 6 to 8 K. This 384 

reduction in H is consistent with a decrease in surface aerodynamic roughness (Rs), common 385 

for deforestation. The reduction in H more than offsets the cooling through increased albedo, 386 

causing the observed surface warming of 2 K. Consistent with a decrease in surface 387 

aerodynamic roughness and possibly, due to a shallower rooting system, LE was also 388 

observed to decrease with an effect on Ts ranging between 0 and 5 K (corrected for lack of 389 

SEB closure and uncorrected, respectively). 390 

The interplay between albedo driven cooling and roughness-driven warming following 391 

deforestation is reasonably well represented in COSMO-CLM
2
. Contrary to observed 392 

however, modeled warming due to a reduction in H does not exceed albedo cooling. In 393 

COSMO-CLM
2
, both counteracting processes are of equal magnitude (+6 K versus -6 K). The 394 

model and observations differ most in the difference in incoming shortwave radiation from 395 

the atmosphere (SWin) to the vegetation. The difference due to SWin is small and statistically 396 

insignificant (p = 0.50) for the observational site pairs, but very important in our model 397 

simulations. In COSMO-CLM
2
, increased SWin (+7 K) is offset only partially by increases in 398 
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both LE and ground flux (G) (-2.5 K to -3 K each). The result is a surface warming of about 1 399 

K. For summer days, COSMO-CLM
2
 thus simulates a correct change in surface temperature 400 

due to deforestation, but the underlying processes are somewhat different. 401 

As shown in Figure 5a, the increase in modeled incoming shortwave radiation present in our 402 

COSMO-CLM
2
 simulations is a feature that is present in all 7 site pairs, not just the 3 site 403 

pairs with reliable measurements included in the temperature change decomposition analysis. 404 

Figure 5a also shows that the increase is highest in summer and lowest in winter. The increase 405 

in SWin appears to be caused by a decrease in cloud cover (δCLC), and specifically, in 406 

medium (not shown) and low level clouds (dCLC, Figure 5b). This is evidenced by the fact 407 

that the peak in δSWin seem to coincide well with the negative peak in δCLC. 408 

3.2.2 Daytime/ winter 409 

The effect of deforestation on winter surface temperature is simulated correctly in COSMO-410 

CLM
2
; with the model simulating a surface cooling of 2 K, consistent with observations 411 

(Figure 4b). Similar to summer daytime, the difference in albedo drives the observed and 412 

simulated changes. However COSMO-CLM
2
 underestimates the magnitude of the associated 413 

cooling of the open land compared to forest. The model simulates a δTs due to albedo of 414 

about -4 K, as opposed to -8 K for the observations. This presents a departure from the 415 

model’s behavior in summer, where the modeled effect of changes in albedo reasonably 416 

matched the observations. The difference in observed and modeled albedo is likely related to 417 

a mismatch between observed and simulated snow cover, rather than a deficiency in how 418 

plant canopy albedo is parameterized. This is supported by the fact that for the open land sites 419 

in our observational dataset, 21% of winter days with reliable measurements have a surface 420 

albedo higher than 0.5, typical for a snow surface. In our model simulations, this is only the 421 

case for 5% of winter days. 422 

The observational data show that deforestation is associated with a decrease in H, triggered by 423 

both the reduction in Rnet and lower surface aerodynamic roughness and resulting in a 424 

surface warming of 5 to 8 K. COSMO-CLM
2
 also simulates a decrease in H, albeit smaller in 425 

absolute value (2.5 K). However, relative to albedo cooling, the decrease in H is similar in 426 

both model and observations (66 to 100% of albedo cooling for the observations versus 60% 427 

of albedo cooling for COSMO-CLM
2
). Finally, deforestation is characterized by a small 428 

decrease in LE in both observations and COSMO-CLM
2
, triggered by a combination of lower 429 

Rnet, lower surface aerodynamic roughness and a shallower rooting system. The model does 430 

not match the observed changes in SWin and G though: whereas observed SWin shows a 431 
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small decrease and no change in G, model simulations show a small increase in SWin and a 432 

small increase in G. 433 

Overall, we can conclude that COSMO-CLM
2
 simulates the observed δTs during winter days 434 

accurately, and moreover, is correct in its simulation of the underlying mechanisms: albedo-435 

induced cooling partially offset by a decrease in sensible heat flux is the dominant mechanism 436 

during winter days for both model and observations. COSMO-CLM
2
 does underestimate the 437 

magnitude of albedo-induced cooling due to an underestimation in the amount of snow events 438 

compared to observations. 439 

3.2.3 Nighttime 440 

During nighttime, open land sites are observed to be significantly cooler than nearby forested 441 

sites (Figure 6) during both summer (-2 K) and winter (-5 K). This LUC effect is completely 442 

missing from our COSMO-CLM
2
 simulations. In COSMO-CLM

2
, open land nighttime 443 

temperatures are statistically equal to nearby forest temperatures during summer (p = 0.13), 444 

and only slightly lower during winter. The biggest difference between model and observations 445 

is in the incoming longwave radiation component (LWin). For our observational site pairs 446 

LWin over the open land site is considerably lower than over the nearby forested site. The 447 

cooling associated with this reduction in LWin ranges from 1.5 to 2.1 K, for summer and 448 

winter respectively. In our model simulations, the cooling associated with this factor is 449 

smaller, ranging from 0.1 to 0.5 K. 450 

Monthly boxplots for the difference in nighttime incoming longwave radiation (δLWin) are 451 

shown in Figure 7 for both model and observations. On the observational side, mean δLWin 452 

across all reliable data equals -7.8 Wm
-2

 and is statistically different from zero (p<1E-15). 453 

The 75th percentile of δLWin is below zero for all but three months, pointing towards a broad 454 

yearlong trend of decreased LWin following deforestation. On the other hand, COSMO-455 

CLM
2
 simulations are characterized by a mean δLWin of only -0.9 Wm

-2
, a difference which 456 

is not statistically different from zero (p = 0.10). Therefore, we can conclude that in our 457 

simulations, no broad yearlong trend towards a decrease in LWin exists. 458 

Model and observations disagree over the change in G as well, and the disagreement observed 459 

in this component contributes to explaining why simulated and observed δTs differ. In 460 

summer, both observations and simulations have a lower (more negative) G for open land 461 

sites compared to forests. In other words, heat loss of soils to the surface is more important for 462 

open land than for forest. However, COSMO-CLM
2
 overestimates this effect by almost 1 K. 463 
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In winter, the observed difference in ground flux between open land and forested sites is 464 

significant on the 0.05 level but very small (p = 0.10) whereas in COSMO-CLM
2
 open land 465 

sites still have more ground heat release, causing a surface warming of about 2 K. 466 

The observed and modeled mean daily cycle of G during winter for forest and open land are 467 

shown in Figure 8. The observed G is characterized by minimal diurnal variation, remaining 468 

slightly negative throughout. This is true for both open land and forest sites, as both lines are 469 

virtually identical. Modeled G, however, is characterized by considerable diurnal variation, 470 

from highly positive during daytime to negative at night. Moreover, modeled G differs 471 

between forests and open land, resulting in a nighttime difference in surface warming not 472 

present in reality. It is worth noting that, at least in part, this disagreement between model and 473 

observations could be related to the modeled underestimation in wintertime snow cover (as 474 

mentioned in section 3.2.2), since snow tends to insulate the soil column. 475 

 476 

Observations and simulations do agree on the contribution caused by the sensible heat 477 

component (H). At night, as the surface cools, a stable reverse stratification usually forms in 478 

the nocturnal boundary layer. Turbulence can disrupt this stable stratification, and bring heat 479 

from aloft to the surface. However, open land sites are characterized by a decreased surface 480 

roughness and thus, a decrease in turbulence. This is observed at our observational pairs: the 481 

open land sites are characterized by a higher H, which at night means less negative, leading to 482 

a mean cooling of 2.2 to 3 K compared to forests, depending on season. COSMO-CLM
2
 is 483 

able to simulate this behavior with the associated cooling matching observations in winter and 484 

slightly underestimating this process by 0.8K in summer. 485 

4 Discussion 486 

4.1 Daily cycle of the observed temperature difference between forest and 487 

grassland. 488 

Owing to the strict requirements for data quality and availability, our study could only make 489 

use of three to seven observational pairs depending on the analysis. Representativeness of our 490 

analysis of few sites was tested against the body of literature on the topic. A strong latitudinal 491 

dependency of the drivers of δT is emerging from literature study. For the tropical zone, most 492 

studies agree that deforestation causes a warming of local climate because here, the warming 493 

effect of a decrease in evapotranspiration tends to outweigh the cooling effect of a higher 494 

albedo (e.g.[Randow et al., 2004]). This first order effect of deforestation has been 495 
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successfully reproduced by several modeling studies [Davin and de Noblet-Ducoudré, 2010; 496 

Nogherotto et al., 2013; Akkermans et al., 2013; Akkermans et al., 2014; Lejeune et al., 2014]. 497 

Conversely, in the boreal zone, most observational studies agree that deforestation leads to a 498 

cooling of local climate, because here, the increase in albedo due to the highly contrasting 499 

albedo during the snow season dominates the temperature response (e.g. [Randerson et al., 500 

2006]). Temperate climate zones, such as in Europe where this study was located, are 501 

characterized by a δT response that is in between these two extremes. Just like in the tropical 502 

and boreal climate zones, open land surfaces tend to be brighter than forests, a cooling effect 503 

that increases with latitude due to the increasing presence of winter snow cover. Two other 504 

mechanisms have the potential to cause an opposing surface warming: a reduction in turbulent 505 

surface cooling due to reduced surface roughness and decreased evapotranspiration due to 506 

both reduced roughness and a shallower rooting system. 507 

Despite observational evidence remaining limited, most studies using observational data for 508 

temperate regions (e.g. Europe, most of North America, parts of Asia) agree on the 509 

aforementioned biogeophysical mechanisms (Table 4). Disagreement does exist over the sign 510 

of the yearly mean δT signal. Some observational studies conclude that winter cooling is 511 

strong enough to dominate the yearly mean δT signal, or in other words, that on a yearly mean 512 

scale deforestation leads to surface cooling [Lee et al., 2011; Zhang et al., 2014]. Baldocchi et 513 

al. [2013] also report cooling, but the dominant mechanisms here are somewhat different. 514 

Other observational studies conclude that the summer decrease in LE and/or H and associated 515 

summer warming following deforestation is strong enough to cause a positive yearly mean 516 

signal for δT (e.g. [Juang et al., 2007; Montes-Helu et al., 2009]). 517 

The studies cited here are some of the only observational studies performed for temperate 518 

zones that simultaneously study the effect of deforestation on both surface temperature and 519 

the full surface energy budget. The fact that some studies associate deforestation with surface 520 

warming while others observe cooling supports the hypothesis that in temperate regions, the 521 

yearly mean δT signal is the results of opposing mechanisms and can go towards either 522 

warming or cooling depending on local conditions [Pitman et al., 2011; Luyssaert et al., 523 

2014]. Interestingly, results from modeling studies using global climate model simulations 524 

tend be more one sided. These studies generally agree that deforestation in temperate regions 525 

leads to surface cooling [Snyder et al., 2004; Brovkin et al., 2006; Bala et al., 2007; Davin 526 

and de Noblet-Ducoudré, 2010]. One possible reason could be the large scale of deforestation 527 

utilized in these simulations, when compared to the scale of deforestation typical for 528 
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observational studies. These large scale deforestations could trigger atmospheric and/or ocean 529 

feedbacks in global climate models that do not occur after deforestations smaller in scale (e.g. 530 

a sea-ice feedback). Second, we speculate that these model simulations do not fully capture 531 

the varied observed impact of deforestation because they lack the variety in land use subtypes 532 

present in reality. 533 

The seven observational pairs used in this study are characterized by a yearly mean δT of 534 

about -2.5 K, and are thus in line with the global climate modeling studies and other 535 

observational studies reporting cooling. However, it is worth noting that so far, we have only 536 

discussed the daily mean climate effect of deforestation. Few studies distinguish between 537 

daytime and nighttime climate when analyzing the effect of deforestation on temperature, like 538 

we did here. Only two such studies could be found using observational data for climate zones 539 

similar to our European study area: a study for North America conducted by Lee et al. [2011] 540 

and a follow up study performed by Zhang et al. [2014] for Eastern Asia. In concordance with 541 

our results, these studies confirm the importance of differentiating between daytime and 542 

nighttime climate when analyzing δT caused by deforestation. 543 

Lee et al. [2011] compared 2m air temperature for 37 open land/ forest site pairs across North 544 

America. A surface energy budget analysis showed that daytime δTa following deforestation 545 

is determined by the balance between two processes also described in this study: warming due 546 

to suppression of turbulent fluxes versus cooling due to increased albedo. For site pairs in the 547 

28°-45° N latitudinal range the effect of these two processes on Ta offset each other perfectly. 548 

In the 45°-56° N latitudinal range, albedo induced cooling is stronger and is able to overcome 549 

warming due to turbulent suppression. The daytime specific δTa values and the responsible 550 

processes reported in this study for European site pairs seem to coincide well with these 551 

observed North American values. The mechanisms responsible for the temperature 552 

differences are the same mechanisms we discussed when giving an overview of the daily 553 

mean effect of deforestation. 554 

The storyline does change when moving the analysis to nighttime. Few studies report 555 

nighttime δTa values, but the ones that do all report that deforestation leads to a nighttime 556 

cooling in the order of -1 to -2 K (Table 4). Values for δTa reported here are similar, at -2 K 557 

uncorrected and -1 K with extreme lapse rate correction for the data subset using all site pairs. 558 

Both Lee et al. [2011] and Zhang et al. [2014] also touch briefly on the mechanism 559 

responsible for these differences, speculating that open land is cooler at night because forests 560 

can bring more heat from aloft to the surface due to increased turbulent mixing. However, 561 
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neither study provides any evidence backing up this hypothesis. As shown here in section 3.2, 562 

the nighttime cooling associated with deforestation observed in our site pairs seems to be the 563 

result of a combination of factors. The first mechanism responsible for nighttime cooling is a 564 

decrease in incoming longwave radiation. Second, a decrease in turbulent mixing (evidenced 565 

by a higher, less negative mean H at night) is observed, confirming the mechanism suggested 566 

by Lee et al. [2011]. At night, forests thus warm the surface through increased roughness, 567 

turbulence and vertical advection. A similar mechanism was reported by Wouters et al. [2013] 568 

for built-up urban environments. 569 

Important to note however, is that these studies show that nighttime δTa values are essential 570 

in explaining observed yearly mean δTa. For example, our results show that without nighttime 571 

cooling, yearly mean daily δT following deforestation would be positive instead of slightly 572 

below zero. The same is true for the North-American site pairs studied by Lee et al. [2011] in 573 

the 28°-45° N latitudinal range. To conclude, there are clearly important mechanisms at play 574 

at night which are unrelated to the mechanisms commonly associated with deforestation in 575 

studies which focus only on daily mean effects. These mechanisms are important in 576 

explaining daily mean δTa, and should therefore be accounted for. 577 

4.2 Added value of methodology based on temperature decomposition 578 

As mentioned in the introduction, the methodology as applied in this study, which combines 579 

simulations with a coupled land-atmosphere, a direct sensitivity analysis evaluating the 580 

changes associated with deforestation, a separate analysis for daytime and nighttime and 581 

temperature decomposition is a novel way of evaluating the impact of LUC in climate models. 582 

It moves past simple bias description by investigating the biogeophysical mechanisms 583 

responsible for surface temperature differences in both model and observations. This is 584 

accomplished by calculating the sensitivity of changes in surface temperature to changes in 585 

the component of the energy budget, i.e., albedo, latent heat, sensible heat, incoming 586 

shortwave radiation, ground heat and ecosystem emissivity. 587 

The underlying idea of this method is that LUC triggers changes in the biogeophysical 588 

interactions between the land surface and the atmosphere. For example, forests have deeper 589 

and more complex rooting systems compared to grasses or crops, and therefore, are likely to 590 

maintain higher evapotranspiration rates under dry conditions. This example illustrates that 591 

changes in biogeophysical properties following LUC have a direct or indirect impact on one 592 

or multiple components of the surface energy budget. In this particular example, the SEB 593 

component most affected will be latent heat flux. In turn, any change in a SEB component 594 
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triggers, if isolated, a change in near surface temperature. For example, higher 595 

evapotranspiration rates, if not compensated by changes in other surface energy budget terms, 596 

will lead to lower near surface temperatures due to evaporative cooling. Note though that the 597 

method decomposes the net effects of LUC. Gross effects and feedbacks resulting in the net 598 

effect remain hidden. 599 

The decomposition method described here allows us to determine whether our model gives 600 

acceptable results for δTs following LUC, or in other words whether the model is simulating 601 

correct δTs values for the right biogeophysical reasons. The decomposition method also helps 602 

establishing whether incorrect δTs values are due to large biases in several biogeophysical 603 

mechanisms, due to the result of a modest underestimation in just one of the important 604 

mechanisms, or alternatively, simply due to one or more observed biogeophysical 605 

mechanisms that are not modeled. These results are summarized in Table 5. 606 

For winter days, COSMO-CLM
2
 is able to simulate correct δTs values for the right reasons, 607 

with both model and observations showing a similar cooling following deforestation due to 608 

higher albedo partially offset by a reduction in turbulent fluxes. For summer days, both model 609 

and observations showed warming following deforestation, but the model simulations include 610 

a mechanism raising SWin that was not confirmed by the observations.  611 

Nighttime δTs values were clearly biased, largely underestimating the observed nighttime 612 

cooling following deforestation. Biases in two distinct mechanisms are responsible for this 613 

underestimation: an underestimation of the reduction in LWin and an overestimation of the 614 

increase in heat storage release. It is worth noting thought that a third important nighttime 615 

mechanism, a decrease in turbulent mixing, was found to be well represented. 616 

4.3 Difference in nighttime LWin 617 

Why do we observe a lower LWin over open land at night (Figure 7)? One possible 618 

explanation is a decrease in water vapor in the nocturnal boundary layer (NBL), compared to 619 

forests. It is well known that water vapor acts as a greenhouse gas, limiting the escape of 620 

longwave radiation through the atmosphere [Christy et al., 2006]. It can also cause swelling of 621 

hygroscopic aerosols, further increasing LWin in situations where there are substantial 622 

emissions of aerosols into the NBL [Nair et al., 2011]. However, only limited evidence of 623 

lower water vapor content over open land exists in our measurements. Nighttime specific 624 

humidity measured over forest and open land (usually only a few meters above vegetation for 625 

flux measurement sites) is comparable for the DE1 site pair and is somewhat lower over open 626 
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land for the IT2 site pair (-0.4 g/kg or -12% in winter and -1.4 g/kg or -14% in summer). No 627 

paired humidity measurements exist for the DK1 site pair. The observations thus do not 628 

provide conclusive evidence for a decrease in LWin over open land due to decreased water 629 

vapor loading. Answering this question more conclusively would require more measurements 630 

higher up in the boundary layer. 631 

One other factor which could explain reduced nighttime LWin over open land is a difference 632 

in NBL aerosol loading. Most studies into the effect of atmospheric aerosols focus on daytime 633 

(e.g. [Bellouin et al., 2005; Takemura et al., 2002]). During daytime, aerosols tend to have a 634 

cooling effect on surface temperature due to: 1) the direct effect of increased scattering and 635 

absorption of shortwave solar radiation and 2) the indirect effect on cloud formation (aerosols 636 

act as cloud condensation nuclei) [Yu et al., 2002]. There are few studies focusing on the 637 

effect of aerosols on nighttime surface climate. One recent study by Nair et al. [2011] did 638 

focus on nighttime, using a one-dimensional version of a regional climate model to assess the 639 

effect of urban aerosols on radiative forcing and surface air temperature. The results showed 640 

that urban aerosols have a statistically significant impact on nighttime downwelling longwave 641 

radiation at the surface, increasing LWin by 2.7 to 47 Wm
-2

, depending on the scenario used. 642 

We therefore hypothesize that the difference in nighttime LWin observed for site pairs DE1 643 

and IT2 could be related at least in part to a difference in NBL aerosol loading. Forests emit 644 

large quantities of biogenic volatile organic compounds (BVOC’s) into the atmosphere, which 645 

then in turn contribute to the formation of large secondary organic aerosols (SOA) [Ehn et al., 646 

2014; Carslaw et al., 2010]. Studies for boreal forests (where anthropogenic air pollution is 647 

minimal) have shown that these biogenic SOA can have a large local impact on the radiative 648 

budget [Kurten et al., 2003; Spracklen et al., 2008]. Recently, a modeling study has estimated 649 

the impact of global historic cropland expansion through BVOC emissions at a cooling 650 

equivalent to -0.11 ± 0.17 Wm
-2

 [Unger, 2014]. However, these studies focus mainly on the 651 

impact of aerosols on shortwave scattering and cloud formation. So far, a detailed analysis 652 

into the impact of biogenic aerosols on nighttime radiative forcing over forests has not yet 653 

been performed. 654 

Finally, higher values of nighttime LWin over forests could be related to the enhanced 655 

entrainment of warm air reported in the results section. As mentioned above, forests, owing to 656 

their higher aerodynamic roughness, generate more turbulence, evidenced by a lower (more 657 

negative) mean nighttime sensible heat flux (Figure 6). As shown by Walters et al. [2007], 658 

any perturbation in a weakly stable nocturnal boundary layer can trigger a shift from a stable 659 
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temperature profile to a turbulent regime, mixing warm air from aloft and significantly 660 

increasing (near) surface temperature. Assuming the advection of warmer air closer to the 661 

surface increases surface LWin, the higher nighttime LWin observed over forests could 662 

simply be related to the increased occurrence of this type of disruptive events. If true, 663 

however, it would mean that COSMO-CLM
2
 correctly simulates the mean decrease in H over 664 

forests, but not the associated near surface air warming and increase in LWin. One possible 665 

reason could be that the vertical resolution used (32 vertical levels for the entire atmosphere) 666 

is inadequate, lacking the precision required to simulate these vertical processes in the 667 

shallow NBL. Climate model runs at higher vertical resolution are needed to verify this 668 

hypothesis. 669 

4.4 Difference in daytime SWin 670 

The observed reduction in low and mid-level cloud cover may be a response to a reduction in 671 

turbulence associated with deforestation. Turbulence can cause convective cloud formation in 672 

the boundary layer, especially during summer. However, as shown in the rightmost panel of 673 

Figure 5, the modeled daytime sensible heat flux over open land is significantly lower than 674 

the modeled sensible heat flux over forests, with a mean reduction of about 50 Wm
-2

, which 675 

could definitely contribute to a reduction in cloud cover. No similar consistent decrease in 676 

incoming shortwave radiation during summer days is observed in our FLUXNET site pairs. 677 

However, it is worth noting that this could be related to the specifics of the evaluation setup 678 

used in this study.  679 

As mentioned previously, we attempt to simulate the difference in forest and open land 680 

climate observed in FLUXNET site pairs by modifying the land use of a 25 by 25 km model 681 

pixel (625 km
2
). The observational setup, in which we compare flux tower measurements 682 

from two separate real world locations, resembles this situation in land use but not necessarily 683 

in scale. For example, most forest measurement locations are located in relatively small forest 684 

patches (2 – 60 km
2
) surrounded by open land. The forest patches of site pairs DK1, DE1 and 685 

IT2, the 3 site pairs included in the reliable data subset, are approximately 3 km
2
, 60 km

2
 and 686 

10 km
2
 in size, respectively. The DK1 and DE1 forest patches are surrounded mostly by 687 

cropland, the IT2 forest patch is surrounded by a mountainous landscape consisting of forests, 688 

grasslands, steep rocky slopes and villages.  689 

Therefore, we cannot conclude with any certainty that the decrease in convective uplift and 690 

associated decrease in cloud cover simulated by COSMO-CLM
2
 represents a genuine model 691 

bias. Several studies have shown that this mechanism can have a substantial impact when land 692 
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use is altered on a large scale. For example, in southwestern Australia, a substantial area of 693 

approximately 100,000 km
2
 was cleared for agricultural use (mostly wheat) during the 20th 694 

century, while the natural woodlands to the east were left untouched. Observational studies 695 

have shown that the woodlands lower albedo and higher aerodynamic roughness lead to 696 

higher convective activity and a deeper boundary layer. Combined with a local circulation 697 

pattern bringing in moist air from the wheatlands, this resulted in an increase in convective 698 

cloud formation and precipitation (+10%) over the woodlands, and a corresponding decrease 699 

in precipitation over the wheatlands (-30%) [Chambers, 1998]. Land degradation in the Sahel 700 

may have caused a similar shift in local circulation and precipitation, exacerbating the 30 year 701 

drought initially triggered by changes in sea surface temperature in the adjacent Atlantic 702 

Ocean [Foley et al., 2003, Lauwaet et al., 2009, Lauwaet et al., 2010].  703 

Therefore, regional climate runs at a higher horizontal resolution (e.g. 1-2 km) are necessary 704 

to determine whether the difference between modeled and observed SWin is in fact caused by 705 

a mismatch in LUC scale. Furthermore, the presence of a scale related bias means the 706 

evaluation methodology presented here is not immediately transferable to GCM’s, given the 707 

strong contrast between the scale of LUC represented by our observational site pairs and the 708 

typical resolution currently used for global simulations (100 - 200 km). 709 

5 Conclusions 710 

In this study, we present a method for evaluating the impact of LUC on surface climate in 711 

coupled land-atmosphere climate models. The method uses a paired site approach and 712 

differentiates between daytime and nighttime climate. It evaluates both the difference in 713 

surface temperature and the underlying mechanisms by applying a radiative surface 714 

temperature (Ts) change decomposition equation to both observations and model simulations. 715 

We apply it to a state of the art regional climate model used extensively for Europe, namely 716 

COSMO-CLM
2
. 717 

Observed differences in 2m air temperature (δTa) and radiative surface temperature (δTs) for 718 

European open land and forest site pairs are mostly in line with literature reported values for 719 

temperate climate regions, and stress the important contribution of nighttime temperature 720 

change to the daily mean temperature change signal. However, they are not uniformly 721 

reproduced by our climate model. Daytime δT following deforestation is simulated correctly 722 

in winter but underestimated in summer. The impact of deforestation on nighttime Ts, namely 723 

a significant cooling, is not captured in the model. Using the δTs decomposition equation, we 724 

were able to identify the underlying reasons by determining which LUC related 725 
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biogeophysical mechanisms were well represented in COSMO-CLM
2
, and which were not 726 

(Table 5). 727 

This analysis showed that nighttime cooling is missing from COSMO-CLM
2
 mainly because 728 

it does not capture the observed reduction in incident longwave radiation (LWin). We 729 

hypothesize three mechanisms that might be responsible for this reduction in LWin over open 730 

land in the observations: an aerosol effect related to forest VOC emissions, decreased 731 

boundary layer humidity and a reduction in near surface air warming due to increased 732 

nocturnal boundary layer stability. In contrast, two mechanisms responsible for a change in Ts 733 

over open land sites are in fact adequately represented in COSMO-CLM
2
: surface cooling due 734 

to a higher (less negative) sensible heat flux and summertime surface warming due to an 735 

increase in heat storage release.For daytime, one biogeophysical deforestation mechanism in 736 

particular is responsible for the sign and magnitude of observed δTs values: surface cooling 737 

due to a higher albedo, which is more than compensated by warming due to reduced turbulent 738 

fluxes in summer, but only partly compensated by reduced turbulent fluxes in winter. This 739 

mechanism proved to be reasonably well represented in COSMO-CLM
2
. However, COSMO-740 

CLM
2
 includes an additional atmospheric feedback in summer: the reduction in surface 741 

aerodynamic roughness and associated decrease in turbulent fluxes reduces convective cloud 742 

formation and increases incoming shortwave radiation. There is no evidence for this feedback 743 

in the observational dataset. This might be due to an issue of scale, as the forested vegetation 744 

patches used in the observational dataset (2-60 km
2
) are considerably smaller than the 745 

simulated patches (625 km
2
).Overall, our results highlight the importance of evaluating LUC 746 

effects separately for daytime and nighttime conditions rather than for average conditions. 747 

Averaged values might not reflect reality if the climate model used contains a nighttime bias 748 

similar to what was reported here. To further improve upon the above evaluation, higher 749 

resolution runs (both horizontal and vertical resolution) and more detailed observational data 750 

are needed. Especially for nighttime, detailed vertical profiles of temperature, humidity and 751 

ideally, aerosol concentrations in the nocturnal boundary layer are needed to determine what 752 

mechanisms are responsible for the increase in LWin over forests. 753 
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Tables 1015 

Table 1: Characteristics of site pairs used in this study. 1016 

Cluster 
name 

Lat Lon Site name Elevation 
(m) 

Distance 
(km) 

Data 
availability 

Land use IGBP 
class 

Climate group 

DK1 55,49 11,65 Soroe- 
LilleBogeskov 

40 28,8 2004:2008 Mixed 
forest 

DBF Temperate 

DK1 55,53 12,10 Risbyholm 10 28,8 2004:2008 Cropland CRO Temperate 

DE1 50,96 13,57 Tharandt 380 8,5 2004:2008 Mixed 
forest (87% 
evergreen) 

ENF Temperate 

DE1 50,89 13,52 Klingenberg 480 8,5 2004:2008 Cropland CRO Temperate 

CZ1 49,50 18,54 Bily Kriz 
Beskidy 

908 0,9 2004:2006 Young 
Norway 
spruce 
plantation 

ENF Temperate-
Continental 

CZ1 49,50 18,54 Bily Kriz 
Grassland 

855 0,9 2004:2006 Grassland 
(managed 
as 
meadow) 

GRA Temperate-
Continental 

IT2 45,96 11,28 Lavarone 1343 19,3 2003:2008 Mixed 
coniferous 
forest 

ENF Temperate 

IT2 46,02 11,05 Monte 
Bondone 

1550 19,3 2003:2008 Grassland 
(managed 
as 
meadow) 

GRA Temperate 

IT1 41,85 13,59 Collelongo 1550 6,2 2003:2008 Irregularly 
structured 
beech 
forest 

DBF SubTropical-
Mediterranean 

IT1 41,90 13,61 Amplero 884 6,2 2003:2008 Pasture GRA SubTropical-
Mediterranean 

ES1 39,35 -0,32 El Saler 10 7,8 2004:2006 Pine forest ENF SubTropical-
Mediterranean 

ES1 39,28 -0,32 El Saler-Sueca 41 7,8 2004:2006 Cropland CRO SubTropical-
Mediterranean 

PT1 38,54 -8,00 Mitra Tojal 250 7,4 2004:2005 Cork and 
holm oak 

EBF SubTropical-
Mediterranean 

PT1 38,48 -8,02 Mitra Evora 190 7,4 2004:2005 Grassland GRA SubTropical-
Mediterranean 

List of site pairs used in this study, the distance between sites within a pair and the years for 1017 

which common measurements are available. Each site pair is assigned an acronym based on 1018 

its location (e.g. DE1 is located in Germany), and consists of a forest (grey) and an open land 1019 

site (white). In total, 14 sites were used to create 7 site pairs. IGBP classes represented in this 1020 

dataset include deciduous broadleaf forests (DBF), evergreen needleleaf forests (ENF), 1021 

evergreen broadleaf forests (EBF), grasslands (GRA) and croplands (CRO).  1022 
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Table 2: List of model parameter values for all FLUXNET sites. 1023 

Cluster name Site name PFT CTH LAImax 

DK1 Soroe- LilleBogeskov BDT-T 20 4,8 

DK1 Risbyholm Crop 0,5 1,4 

DE1 Tharandt NET-T 26,5 7 

DE1 Klingenberg Crop 0,5 2,4 

CZ1 Bily Kriz Beskidy NET-T 12,5 6,7 

CZ1 Bily Kriz Grassland C3 Grass 0,5 2,2 

IT2 Lavarone NET-T 30 8 

IT2 Monte Bondone C3 Grass 0,5 3,2 

IT1 Collelongo BDT-T 21,2 5 

IT1 Amplero C3 Grass 0,5 2,4 

ES1 El Saler NET-T 12 3,1 

ES1 El Saler-Sueca Crop 0,5 1,1 

PT1 Mitra Evora BDT-T 7 2,2 

PT1 Mitra Tojal C3 Grass 0,5 1,7 

Shows plant functional type (PFT), canopy top height (CTH) and summer maximum of leaf 1024 

area index (LAImax).  1025 
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Table 3: Data availability 1026 

 
  

1. IT2 2. DE1 3. DK1 4. IT1 5. CZ1 6. PT1 7. ES1 

Number of years 
  

6 5 5 5 3 2 3 

Ta measurements 

Entire year 0-24 97 93 96 67 38 70 88 

 
12-15 97 92 96 67 36 70 88 

 
0-3 97 92 96 66 35 69 87 

JJA 0-24 93 98 93 83 83 67 100 

 
12-15 92 97 92 81 78 67 100 

 
0-3 92 96 91 81 78 67 99 

DJF 0-24 97 85 98 43 0 67 74 

 
12-15 97 84 98 43 0 67 74 

 
0-3 96 84 98 42 0 67 74 

LWout 
measurements 

Entire year 0-24 96 78 41 17 28 0 0 

 
12-15 96 77 41 16 27 0 0 

 
0-3 96 76 40 16 26 0 0 

JJA 0-24 91 75 39 27 55 0 0 

 
12-15 91 73 38 25 52 0 0 

 
0-3 91 73 38 26 51 0 0 

DJF 0-24 96 84 42 5 0 0 0 

 
12-15 95 83 42 5 0 0 0 

 
0-3 95 81 42 5 0 0 0 

Reliable 

Entire year 0-24 25 35 21 0 0 0 0 

 
12-15 6 29 19 0 0 0 0 

 
0-3 22 41 21 0 0 0 0 

JJA 0-24 24 44 14 0 0 0 0 

 
12-15 4 36 12 0 0 0 0 

 
0-3 0 52 15 0 0 0 0 

DJF 0-24 29 34 18 0 0 0 0 

 
12-15 10 30 17 0 0 0 0 

 
0-3 49 38 18 0 0 0 0 

Data availability for Ta, LWout and reliable decomposition results (see 2.5) in percentage of 1027 

days with observations. 0-24 denotes the entire day, 12-15 daytime and 0-3 nighttime 1028 

observations.  JJA and DJF were used to distinguish between summer and winter months, 1029 

respectively. Number of years denotes the number of years for which the sites within a pair 1030 

have common measurements.  1031 
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Table 4: Overview of observational studies reporting the effect of deforestation on both 1032 

surface temperature and all surface energy budget terms. 1033 

Study Location Temperatu

re variable 

Time of 

Day 

dT Biogeophysical mechanism 

Juang 

2007 

North 

Carolina 
Ts 

0-24 +1 K 
higher albedo more than offset by 

reduction in H/LE 

12-15 / no separate explanation 

0-3 / no separate explanation 

Montes-

Helu 

2009 

Northern 

Arizona 
Ts 

0-24 
DJF -1 K, JJA +3 to 

+7K 

higher albedo offset by reduction 

in H/LE, balance depending on 

season 

12-15 / no separate explanation 

0-3 / no separate explanation 

Baldocchi 

2013 
California 

potential 

Ta 

0-24 -0.5 K 
(DJF) reduction in H (JJA) higher 

albedo offset by lower LE 

12-15 DJF -0.8 K, JJA +1.7 K no separate explanation 

0-3 DJF -0.8 K, JJA -2.2 K no separate explanation 

Lee 

2011, 

Zhang 

2014 

North 

America 

& East 

Asia, 

north of 

45°N 

Ta 

0-24 -0.85 K, -0.95 K separate explanation for day/night 

12-15 0 K, 0 K 
higher albedo perfectly offset by 

reduction in H/LE 

0-3 -2 K, -2 K reduced turbulence 

Lee 

2011, 

Zhang 

2014 

North 

America 

& East 

Asia, 

south of 

45°N 

Ta 

0-24 -0.21 K, -0.35 K separate explanation for day/night 

12-15 +1 K, +1.2 K 
higher albedo more than offset by 

reduction in H/LE 

0-3 -2 K, -1.9 K reduced turbulence 

 1034 

  1035 
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Table 5: Overview of the biogeophysical mechanisms responsible for observed and modeled 1036 

δTs values. 1037 

Effect of deforestation on daytime climate 

Reality COSMO-CLM
2
 

Cooling due to lower surface albedo (αs), 

which is offset by warming due to reduced 

surface roughness (Rs) 

 

? 

Reduced Rs -> reduced convective uplift –> 

reduced CLC -> increase in SWin -> 

surface warming (most prominent in JJA) 

Effect of deforestation on nighttime climate 

Reality COSMO-CLM
2
 

reduced Rs -> reduced turbulent mixing -> 

surface cooling 
 

Lower LWin and associated surface 

cooling 
 

Surface warming due to more heat storage 

(G) release (JJA) 

Surface warming due to more heat storage 

release (G) (JJA & DJF) 

Overview of the biogeophysical mechanisms responsible for observed and modeled δTs 1038 

values. Checkmarks indicate that the mechanism present in reality is included correctly in the 1039 

model (or vice versa). Question marks indicate that we were not able to determine 1040 

conclusively if the mechanism included in reality was present in the model (or vice versa). 1041 

Crosses indicate that the mechanism included in reality was missing from the model (or vice 1042 

versa). 1043 

  1044 
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Figures 1045 

 1046 

Figure 1: Topography of the model domain and location of the observational pairs. This map 1047 

shows the model domain, including the relaxation zone, the area outside the red rectangle. 1048 

  1049 



40 

 

 1050 

Figure 2: Boxplots of calculated minus observed δTs (δTscalc- δTsobs).The data reliability 1051 

range (+/- 2K) is indicated in red. The percentage values printed over the boxplots show two 1052 

values: the percentage of days with LWout  measurements that have measurements for all 1053 

surface energy budget terms (lefthand value) and the percentage of days with measurements 1054 

of all surface energy budget terms that are deemed reliable (righthand value). 1055 

  1056 
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 1057 

Figure 3: Top row: mean seasonal cycle of a) observed δTa, b) modeled δTa and c) δTa bias 1058 

(modeled δTa MINUS observed δTa). Bottom row: mean seasonal cycle of d) observed δTs, 1059 

e) modeled δTs and f) δTs bias (modeled δTs MINUS observed δTs). For a) and d), the solid 1060 

lines show the temperature difference for the dataset containing only reliable measurements, 1061 

while the dashed lines show the temperature difference when all available measurements are 1062 

used. A 3 month running mean was applied to all timeseries. 1063 

  1064 
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 1065 

Figure 4: Surface temperature change decomposition for daytime (12-15 UTC), for a) summer 1066 

and b) winter. All values represent the change associated with deforestation. The modeled and 1067 

observed mean δTs is shown on top where black is for the observed values and grey for 1068 

modeled. The contribution to δTs for the main components of the surface energy budget are 1069 

shown in red for observed and blue for modeled values. For sensible and latent heat flux, δTs 1070 

was calculated using both the original values and the values corrected for surface energy 1071 

imbalance. The resulting uncertainty is represented by the light colored portion of each bar. A 1072 

black line indicates the δTs value calculated with the uncorrected values for H and LE. δTs 1073 

terms which are significantly different from zero ( p =0.05) are marked by *. For reasons of 1074 

simplicity, components with an associated temperature change that have a yearly mean 1075 

absolute δTs value of less than 0.5K across observations and model simulations were not 1076 

shown. For daytime, this means surface emissivity and incoming longwave radiation. 1077 

  1078 
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 1079 

Figure 5: Seasonal cycle of modeled daytime difference for three variables: a) incoming 1080 

shortwave radiation (SWin), b) low level cloud cover (CLC) and c) sensible heat flux (H). 1081 

The blue line shows the monthly mean over all 7 site pairs. Also drawn is an area plot of plus 1082 

and minus one standard deviation. All available data was used for these figures (not just days 1083 

with reliable observations). 1084 

  1085 
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 1086 

Figure 6: Surface temperature change decomposition for nighttime (00-03 UTC) for a) 1087 

summer and b) winter. All values represent the change associated with deforestation. The 1088 

modeled and observed mean δTs is shown on top where black is for the observed values and 1089 

grey for modeled. The contribution to δTs for the main components of the surface energy 1090 

budget are shown in red for observed and blue for modeled values. For sensible and latent 1091 

heat flux, δTs was calculated using both the original values and the values corrected for 1092 

surface energy imbalance. The resulting uncertainty is represented by the light colored portion 1093 

of each bar. A black line indicates the δTs value calculated with the uncorrected values for H 1094 

and LE. δTs terms which are significantly different from zero (p = 0.05) are marked by *. For 1095 

reasons of simplicity, components with an associated temperature change that have a yearly 1096 

mean absolute δTs value of less than 0.5K across observations and model simulations were 1097 

not shown. For nighttime, this means surface emissivity, incoming shortwave radiation and 1098 

latent heat flux. 1099 

  1100 
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 1101 

Figure 7: Boxplots of difference in nighttime LWin (dLWin) following deforestation for a) 1102 

observations and b) COSMO-CLM2 model simulations. Only reliable data was used. 1103 

  1104 
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 1105 

Figure 8: Mean daily cycle of ground flux during winter for a) observations and b) COSMO-1106 

CLM2 model simulations, for forest and open land sites. Mean over all site pairs. Only 1107 

reliable data was used. 1108 
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