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Abstract Urban areas are usually warmer than their surrounding natural areas, an effect known

as the urban heat island effect. As such, they are particularly vulnerable to global warming and
associated increases in extreme temperatures. Yet ensemble climate-model projections are generally
performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for

the first time, we combine unprecedented long-term (35 years) urban climate model integrations at the
convection-permitting scale (2.8 km resolution) with information from an ensemble of general circulation
models to assess temperature-based heat stress for Belgium, a densely populated midlatitude maritime
region. We discover that the heat stress increase toward the mid-21st century is twice as large in cities
compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its
concurrence with heat waves, and urban expansion. Cities experience a heat stress multiplication by a
factor 1.4 and 15 depending on the scenario. Remarkably, the future heat stress surpasses everywhere the
urban hot spots of today. Our results demonstrate the need to combine information from climate models,
acting on different scales, for climate change risk assessment in heterogeneous regions. Moreover, these
results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.

1. Introduction

Expanding urban areas are hot spots that drive environmental change at multiple scales around the globe
[Seto et al., 2012; Grimm et al., 2008]. Particularly, greenhouse gas emissions and land use changes both lead
to global warming and shifts in weather extremes [Kalnay and Cai, 2003; Revi et al., 2014] with more intense,
more frequent, and longer-lasting heat waves [Meehl and Tebaldi, 2004]. The climatic changes are expected to
adversely influence the economy, ecosystems, and humans that are exposed to it [Watts et al., 2015; Revi et al.,
2014; Seto et al., 2012]. Heat waves particularly result in excessive mortality rates [Mora et al., 2017; Mazdiyasni
etal., 2017; Mitchell et al., 2016; Green et al., 2016; Cox et al., 2016; Xu et al., 2016; Tong et al., 2015; Huang et al.,
2012], higher hospital admissions [Linares et al., 2017; Ihiguez et al., 2016; Diaz et al., 2015], preterm deliv-
ery [Cox et al., 2016], economic and labor productivity loss [Estrada et al., 2017; Zander et al., 2015], damage
to infrastructure, and higher energy usage [Revi et al., 2014]. The total death toll by extreme temperatures
hitting Europe in Summer 2003 and the Russian Federation in Summer 2010 makes heat waves the second
deadliest kind of disaster related to weather extremes during the period 2001 to 2010 [World Meteorological
Organization (WMO), 2014]. The cities—housing already more than 50% of the global population [United
Nations, 2014]—experience an excessive death toll during heat waves compared to the natural surround-
ings because of the urban heat island (UHI) effect [Heaviside et al., 2016; Hoag, 2015; Watts et al., 2015; Laaidi
et al., 2011; Gabriel and Endlicher, 2011; Kalnay and Cai, 2003] and also an excessive economic loss [Estrada
etal., 2017].

Recent studies have been using ensemble general circulation models (GCMs) and regional climate models
(RCMs) to address the future (heat wave related) risks of climate change around the globe including the role
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of urbanization [Mora et al., 2017; Estrada et al., 2017; Mitchell et al., 2016; Fischer et al., 2012; Taylor et al., 2012;
Diffenbaugh and Giorgi, 2012; Fischer and Schdr, 2010; Wilby, 2008; Meehl and Tebaldi, 2004]. However, all of
these studies use climate information on a scale (size of grid cells >2500 km?) that is too coarse to resolve
the interurban variability of the cities. In order to capture the associated heterogeneity in urban atmospheric
feedbacks, the local circulations and weather conditions, one requires to resolve at least the scale of the cities
themselves (<100 km?). The latter is particularly a prerequisite to distinguish between the cities with differ-
ent urban characteristics, including the imperviousness (abundance of buildings, streets, parkings, and other
man-made water-impermeable pavements) and other local environmental aspects (distance from the coast-
line, soil texture, orography, etc.). It is also indispensable for taking the local land use change such as urban
expansion into account. Convection-permitting models (CPMs; size of grid cells <25 km?), offering more
than 100 times more grid cells per unit area than those previous assessments, are able to explicitly resolve
the local heterogeneous weather conditions and especially the urban heat island effect [e.g., Trusilova et al.,
2016; Jdnicke et al., 2016; Wouters et al., 2016, 2013; Bohnenstengel et al., 2011; Van Weverberg et al., 2008]. As
such, they allow to identify the local hot spots and the associated urban climate change risks [Prein et al.,
2015]. Yet CPM downscaling is computationally very expensive, hence recent studies [e.g., Fosser et al., 2017;
Argliesoetal., 2015] only consider a limited amount of emission and land use scenarios [Kendon et al., 2017]. As
such, they do not provide the statistically robust information and uncertainty regarding the ensemble climate
change statistics in weather extremes such as heat waves.

Here we project temperature-based urban heat stress under global warming with a unique combination of
CPM urban climate downscaling [Wouters et al., 2016; Rockel et al., 2008], ensemble information from GCMs
[Taylor et al., 2012; Willems and Vrac, 2011], and sociodemographic land use change modeling [White and
Engelen, 2000]. The CPM climate simulations are performed covering continuous periods of 35 years over an
extended heterogeneous urban area. As such, heat stress is quantified for a historical (1980-2014) and a future
(2040-2074) period with different global emission scenarios and local land use scenarios for Belgium, one of
the most densely populated and urbanized regions in Europe (The World Bank, 2017, http://data.worldbank.
org/indicator/ access date: 2017/03/30). The Belgian scene comprises a compelling case for a midlatitude mar-
itime climate regime with cities of multiple sizes and urban sprawl throughout the domain. It also includes
a topographical scene with flatlands in the north, a coastal area in the west, and a hilly area in the south,
see Figure S1 in the supporting information. In order to account for the temperature changes and associated
uncertainties occurring at the global and local scale, a set of global emission scenarios and local land use
change scenarios are considered. A description of the urban climate downscaling, the heat stress indicator,
the greenhouse gas emission and land use change scenarios, and the decomposition of the climatic drivers
of urban heat stress increase is given in section 2. The results and discussion are presented in sections 3 and 4,
respectively. Finally, the implications for policy are provided in section 5.

2. Materials and Methods

2.1. CPM Climate Downscaling

A control experiment for heat stress assessment is obtained from a 35 year (1980-2014) CPM urban climate
hindcast simulation with the COSMO-CLM model [Rockel et al., 2008; Doms et al., 2011; Buzzi, 2008; Smiatek
etal., 2008; Steppeler et al., 2003] coupled to the urban land surface scheme TERRA_URB [Wouters et al., 2015,
2016; Demuzere et al., 2017] configured over Belgium at 2.8 km resolution (Figure S1). The downscaling strat-
egy takes the lateral boundary conditions from the ERA-Interim-driven COSMO-CLM simulation at 12.5 km
resolution from the COordinated Regional climate Downscaling EXperiment (CORDEX) for Europe [Kotlarski
etal, 2014; Jacob et al., 2013; Vautard et al., 2013]. In agreement to the evaluation of the climate model in ear-
lier studies [Brisson et al., 2016a, 2016b; Wouters et al., 2015, 2016; Trusilova et al., 2016; Demuzere et al., 2017;
Davin et al., 2016], the control simulation was found to reproduce both the observed coarse temperature cli-
matology and the urban heat islands of the study domain very well, see Figures S2, S3, S4, and Table S4. A
detailed description and evaluation of the urban climate model and its control configuration is provided in
the supporting information S1 (see Texts S1 to S4) [WMO, 2008; Davin et al., 2016; Davy and Esau, 2014; Jacob
etal., 2007; Wouters et al., 2013; Dimitrova et al., 2016; Thiery et al., 2016; Vanden Broucke et al., 2015; Akkermans
etal., 2014; Davin et al., 2014; Grossman-Clarke et al., 2016; Prein et al., 2013; Grasselt, 2008; Schulz et al., 2016;
Haylock et al., 2008; De Ridder et al., 2015].

Even though the model has a very good skill in accordance to previous (CPM) model evaluations, the
threshold-based heat stress indicator is very sensitive to the model bias. Therefore, a bias correction is applied

WOUTERS ET AL.

URBAN HEAT STRESS UNDER CLIMATE CHANGE 8998


http://data.worldbank.org/indicator/
http://data.worldbank.org/indicator/

@AG U Geophysical Research Letters 10.1002/2017GL074889

according to gridded daily temperature fields and urban climate observations. Details about the bias correc-
tion can be found in Text S5. As such, the modeled record of the heat stress indicator matches very well the
urban climate observations in Antwerp, especially the urban/rural contrast (see Figure S5).

2.2. Heat Stress Indicator

In order to quantify heat stress for Belgium under climate change, the heat stress indicator from the Flanders
Environment Agency is applied. It has been developed in cooperation with several research institutes and
governmental agencies regarding climate, care, and health in Belgium. It is used to monitor the potential
effect of heat stress episodes on a yearly basis, as a part of the state of the environment reporting in Flanders
[see Brouwers et al., 2015; http://www.milieurapport.be]. The heat stress indicator is obtained by summing
over the days (i) from the beginning of April until the end of September:

> [(Tmm,, ~18.2°C)" + (Types — 29.6°c)*] h; ()
i

On the one hand, the frequency and length of heat waves are considered by means of h;, which indicates the
occurrence of a heat wave day when heat wave alarm levels for temperature are exceeded: It equals to one
in case the daily minimum (T, ;) and maximum (T,.,,, ;) temperature simultaneously exceed their respective
thresholds 18.2°C and 29.6°C during three consecutive days, whereas it equals to zero for the other days. On
the other hand, the intensity of the heat waves is taken into account with the concept of exceeding values
of those temperature thresholds. Therefore, the terms in the inner brackets (...)* represent the exceedance
of Tiin; and T, ; above their respective threshold values 18.2°C and 29.6°C. A motivation of the used heat

stress indicator is provided in Text S6.

2.3. Local Land Use Change Scenarios

Two static local land use scenarios are considered for the CPM climate integrations, namely, a historical urban-
ization (LND:HST; reference year 2000) and a future business-as-usual urbanization (LND:BAU; reference year
2060) [Acosta-Michlik et al., 2011]. They are created using the cellular automata modeling approach [White and
Engelen, 2000], starting from CORINE land cover data set for the reference year 2000 on a 300 m resolution. The
model takes into account the land use changes from the past, while societal boundary conditions with regard
to future policy include economic and demographic changes at the different governmental levels. Based on
the behavior of pattern changes of land use from the past, a business-as-usual-scenario is obtained. By mak-
ing an overlay with the existing impervious surface area (abundance of buildings, streets, parkings, and other
man-made water-impermeable pavements) from Maucha et al. [2010], the land use maps are used for esti-
mating the impervious surface area for the historical and future urbanization, which in turn is taken as input
for the CPM climate downscaling. Detailed information can be found in Text S3 (see also Figure S6).

2.4. Global Emission Scenarios

Global emission scenarios are constructed according to the delta change approach [Tabari et al., 2015; Willems
and Vrac, 2011]. It considers the absolute changes between the temperature distributions from future ensem-
ble scenario runs and those from present-day control runs. Similar as in previous assessment studies [e.g.,
Ahlstrém et al., 2012], these are added to the historical time series to obtain the future temperatures. The
changes in the 10 category quantiles of the distributions for each month separately of the daily minimum and
maximum temperature between the periods 1961-1990 and 2071-2100 are extracted from ensemble GCM
data. The changes are rescaled to obtain the results between the periods 1980-2014 and 2040-2074. The
ensemble data include 42 simulations comprising 11 control runs and 31 future scenario runs (8 x RCP2.6;
8 X RCP4.5; 6 X RCP6.0; and 9 x RCP8.5; full member list provided in Table S3). These are provided by 11
GCM:s from the Coupled Model Intercomparison Project of the World Climate Research Programme Phase 5
(CMIP5) multimodel experiment [Taylor et al., 2012; Moss et al., 2008]. Three scenarios are constructed from this
ensemble, namely, the best case (EMI:BEC), the median (EMI:MED), and the worst case (EMI:WOC) scenario.
They respectively consider the 5th, 50th, and 95th percentile values of the above mentioned changes, offer-
ing the uncertainty range of future temperature changes (see Figures S7a and S7b). The percentile changes
are applied to the historical CPM downscaling fields described in section 2.1.

A motivation and interpretation of the global emission scenarios—especially their relation with the different
RCP scenarios—are provided in Text S7 of the supporting information (see also Figure S7c).
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2.5. Climatic Drivers of Heat Stress Increase
The total heat stress increase under climate change expressed in heat wave degree days (AHWDD; see
section 2.2) is decomposed [Stein and Alpert, 1993] into its different climatic drivers:

AHWDD; 5, = AHWDDg, e + AHWDDpp,
+ AHWDD(py y + AHWDD oy 15
+ AHWDD py yc + AHWDDgpp, com )

The BASEline term (BASE) indicates the change according to the ensemble global emission scenarios
(section 2.4) by changing the monthly-mean temperatures of the coarse-scale record of gridded observations
by Haylock et al. [2008] (see Figure S7a). The Shifting Probability Distribution term (SPD) refers to the addi-
tional heat stress increase when also taking into account the differential change in the monthly 10-category
quantiles of the daily minimum and maximum temperature distributions (section 2.4; see Figure S7b). The
contribution of urban heat stress increase related to the CPM downscaling (section 2.1) is quantified by sub-
sequently adding the monthly-mean CPM (fine-scale) temperature deviation from the above coarse-scale
observational record (CPM_MD), the inclusion of the day-to-day time dependency of the CPM temperatures
(CPM_TD), and the inclusion of the future local land use change under a business-as-usual scenario (CPM_LUC;
see section 2.3). Finally, the additional covariance term (SPD,CPM) arises from simultaneously providing the
information about the shifting probability distribution and the CPM downscaling.

3. Results

3.1. Historical Heat Stress

Results for the heat stress indicator (section 2.2) based on the present-day climate information (section 2.1)
from the CPM downscaling are presented below. Substantial temporal variation of annual-based histori-
cal heat stress is found (Figure S8): excessive heat stress is perceived for the heat wave years (1994, 1995,
2003, 2006, 2010, 2012, and 2013), whereas it vanishes for other years. For the years of extreme heat
between 2001 to 2010, Belgium recorded an excessive heat wave-related mortality rate of 4200 people
(http://www.milieurapport.be). On the European scale, the death toll for the heat wave of 2003 have surpassed
70,000 [Barriopedro et al., 2011]. A strong spatial variation of the heat stress is found as well. The city centers
experience on average 17 heat wave degree days on an annual basis on average (see Figure 1), whereas periur-
ban and rural areas only experience 12 and 2.6 days, respectively. As such, cities experience much higher heat
stress than their respective natural surroundings, which is caused by the UHI effect. UHI intensities increase
with city size (expressed in population number) and imperviousness [Zhou et al., 2013]; hence, the relation
is also found for urban heat stress in the current results (compare Antwerp and Ghent in Figure S8). Inland
cities experience larger heat stress than cities of comparable size closer to the coastline (compare Hasselt with
Bruges in Figure S8). The hilly rural areas with the higher elevation levels in the south experience less heat
stress compared to the lower rural flatlands in the north. Yet the cities centers in the south still experience
similar or even higher heat stress as in the north, because they are located more inland and at low elevation
levels in the river valleys (compare Liege with Ghent).

3.2. Heat Stress Projections

On the basis of local land use change scenarios described in section 2.3 and global emission scenarios
described in section 2.4, future heat stress projections are presented below. The role of the global emission
scenarios is larger than the role of local land use change scenarios in terms of the overall heat stress increase
under global warming and its spread for Belgium (Figures 1 and 2). On average, the heat stress in the urban
centers is multiplied by a factor ranging from 1.5 to 15 depending on the emission scenario, considering the
business-as-usual land use change scenario. These increase factors become slightly smaller when the land
use change is not taken into account (between 1.4 and 14). Similar to the historical heat stress, the future heat
stress has a strong spatial variation. The hot spots are found in the urban centers experiencing an absolute
increase of the annual heat stress from 6.0 to 237 heat wave degree days, and these hot spots become more
intense away from the coastline. For the periurban areas and rural areas, the absolute increase is much smaller
from 4.7 to 207 and from 2.2 and 143 heat wave degree days, respectively. As such, the absolute heat stress
increase is about twice as large for the city centers as for the natural surroundings (urban increment factor
between 1.7 and 2.7 considering the different scenarios). The heat stress in the future climate in case of the
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Figure 1. Climate downscaling hindcast (1980-2014) and projections
(2040-2074) of heat stress for Belgium based on the ensemble emission
scenarios (EMI:HiSTorical/EMI:BEst-Case/EMI:MEDian/EMI:WOrst-Case)
and land use change scenarios (LND:HiSTorical/LND:Business-As-Usual)
for different urban classes. The results are averaged for different levels of
impervious surface area fraction (ISA), i.e., urban centers (purple; ISA for
the surrounding 100 km?2 > 50%), periurban areas (red; 25% < ISA

(100 km?) < 50%) and rural areas (green; ISA (100 km?2) < 25%). The
bullets show the climatological mean, whereas the error bars show the
climatological spread calculated from the range between the 5th and
95th percentile. An overview of the different scenarios are listed in Table
S2, and their description (including the urban climate downscaling
methodology and the used heat stress indicator) can be found in
section 2.

median and worst case emission sce-
narios largely exceeds the heat stress
during the extreme years (i.e., the 95th
percentile value of the annual heat
stress) in the current climate. In addi-
tion, the heat stress for the rural areas in
the future climate is higher than that for
the cities in the current climate. Remark-
ably, the future heat stress for the worst
case emission scenario in the rural areas
during the coldest years exceeds the
present-day heat stress in the urban
centers during the hottest years.

3.3. Climatic Drivers

The presented scenarios allow for a
decomposition of the different climatic
drivers of heat stress increase occurring
at the different scales. The decomposi-
tion follows the methodology described
in section 2.5 and the results are shown
in Figure 3. A substantial part of the heat
stress increase is explained by the global
warming trends in the GCMs imposed
on coarse-scale gridded observational

records. Herein, both the monthly mean change (BASE) and the shifting probability distribution (SPD) of the
daily temperatures are important. The latter stems from the shifting trends in high-temperature extremes in
the global emission scenarios, especially in the worst case scenario (see Figure S7b), for which an excessive
increase of high extremes of daily temperatures is found with respect to the averaged temperatures increase.
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Figure 2. Climate downscaling hindcast (1980-2014) and projections (2040-2074) of annual-mean heat stress based on
the (top row) global emission scenarios (EMI:HiSTorical/EMI:BEst-Case/EMI:MEDian/EMI:WOrst-Case) and (bottom row)
local land use change scenarios (LND:HiSTorical/LND:Business-As-Usual) over Belgium. The heat stress is expressed in
heat wave degree days according to the heat stress indicator provided in section 2.2. An overview of the different
scenarios are listed in Table S2, and their description can be found in sections 2.3 and 2.4. The center of Brussels and the

provincial capitals are indicated with circles.

WOUTERS ET AL.

URBAN HEAT STRESS UNDER CLIMATE CHANGE

9001



@AG U Geophysical Research Letters 10.1002/2017GL074889

250 EMI:BEC EMI:MED EMI:WoC

225
200
175
150
125
100

75

50

25

0 | D
%

BT W Sy T % o Oy T, e O By

234, R/ ¢, > b/ S S0 3¢, - i/
L) A N /4 AR o, 4 2 44 G, 4

Annual heatwave degree days [°C - day]

Figure 3. Total heat stress increase (TOTAL) and its climatic drivers under the three global emission scenarios
(EMI:HiSTorical/EMI:BEst-Case/EMI:MEDian/EMI:WOrst-Case), expressed in future change in annual heat wave degree
days (°C day). Results are averaged for different levels of impervious surface area fractions, i.e., urban centers (purple;
Impervious Surface Area (ISA) for the surrounding 100 km? > 50%), periurban areas (red; 25% < ISA (100 km?2) < 50%)
and rural areas (green; ISA (100 km?) < 25%). The drivers consist of the baseline increase (BASE), the shifting probability
distribution (SPD), the annual-mean contribution from the convection-permitting model downscaling (CPM_M), its
day-to-day time dependency (CPM_TD), the local land use change (CPM_LUC), and finally the covariance between
shifting probability distribution and the CPM downscaling information (SPD,CPM). Details about the emission scenarios
and the decomposition of the climatic drivers can be found in sections 2.4 and 2.5, respectively.

This is in agreement with the expected increase in temperature variance for Western Europe [Vogel et al., 2017;
Horton et al., 2015; Donat and Alexander, 2012; Schdr et al., 2004; Beniston et al., 2007; Seneviratne et al., 2006].
We reveal a profound exacerbation of heat stress increase by the CPM climate downscaling. In the urban cen-
ters, the exacerbation ranges between 96% and 381% relative to the GCM-based trends depending on the
emission scenario. Particularly, cities already experiencing higher temperatures due to the UHI effect perceive
an additional heat stress increase under global warming. We find that the major part of this excess is attributed
to urban heat islands on a monthly basis (CPM_M). However, we demonstrate that the day-to-day variation of
the CPM downscaling leads to an important additional excess as well (CPM_TD) and results from the excessive
UHI intensities during heat waves [Hamdi et al., 2016; Li and Bou-Zeid, 2013]. In fact, the high-pressure con-
ditions with high surface solar irradiation and low wind speeds establishing heat waves also enhance urban
heatisland intensities [De Ridder et al., 2016]. The terms CPM_M and CPM_TD denote the additional heat stress
increase under climate change resulting from the higher temperatures—especially during heat waves—in
the cities than in the rural areas. Such an excessive heat stress increase originates from the nonlinear response
of the heat stress (indicator) to increasing temperatures (taking both the number and intensity of heat wave
days into account) occurring at the global and synoptic scale.

Finally, a further excess in heat stress results from the local land use change by urban expansion (CPM_LUC)
for the three urban categories. It mostly affects the periurban areas where the urban expansion typically takes
place, yetit also affects the city centers. Here an excess accumulation takes place in the periurban areas around
the city centers; At night, the air in the direction of the urban centers accumulates more heat (or is cooled
less) due to the increasing amount of heat stored in the cities’ periphery. This eventually leads to a greater
UHI intensity in the centers. While the additional effect from urban expansion seems small, the overall heat
stress increase is found to be twice as large in urban areas compared to that in the rural areas. This is not
contradicting: in the former, the effect of urban expansion does not reflect (yet accounts for) the effect of
existing urbanization. In the latter, the heat stress increase also considers the effect of existing urbanization.
Furthermore, additional future urban heat stress increase established by local land use change averaged for
the three urban categories may seem small compared to that established by the global emissions on the scale
of the study domain. Still, this further exacerbation may have important consequences for the city centers
in the median and worst case emission scenarios. Moreover, it should be noted that new emerging urban
areas experience strong impacts as their future heat stress becomes more similar to the existing urban areas
(compare Figure 2, bottom row with Figure 2, top row), particularly the new urban sprawl around Brussels and
Antwerp in the center of the domain.
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4. Discussion

Our results are consistent with previous heat stress assessments which also found a profound heat stress
increase in response to greenhouse gas-induced climate change [Fischer and Schdir, 2010; Meehl and Tebaldi,
2004; Huth et al., 2000], and an amplification by the expanding urban land forms [Argiieso et al., 2015; Fischer
et al., 2012]. They support the view that there will be a strong increase in the risk of heat wave-related prob-
lems, especially for citizens’ mortality because of more extreme future heat waves [Mora et al., 2017; Wilby,
2008]. However, the new framework, that combines climate models acting on the different scales, offers
novel insights on the relation between heat wave-related problems, urbanization, and climate change and
are summarized below:

1. By explicitly resolving the interurban heterogeneity, the urban CPM reveals the propagation of heat stress
increase under climate change toward the scales of the cities. It also indicates its dependency to the city
size and imperviousness and to other local environmental aspects such as distance from the coastline, soil
texture, and orography. As such, local hot spots of heat stress are identified and, particularly, the role of
urban heat islands and their concurrence with heat waves. Moreover, our modeling approach reveals the
additional role of local land use change indicating that urban expansion results in a further amplification of
heat stress increase under climate change.

2. The incorporation of the ensemble information from the GCMs allows us to quantify the climatic drivers of
heat stress at the global and synoptic scale, especially the role of the trends in both averaged and extreme
temperature.

3. The combination of the ensemble global emission scenarios and local land use change scenarios enables a
comprehensive quantification of the different heat stress drivers under climate change at the global to the
local scale. This includes the characterization of the uncertainty ranging from a best- case to a worst case
global emission scenario.

While the urban heat stress drivers and the underlying mechanisms are explained for a specific region, their
implications are relevant for other regions around the world. Particularly, the majority of cities are susceptible
to global warming and UHIs, which could lead to comparable climate drivers of heat stress as those found for
the current study area. Still, this needs to be verified with additional climate assessments.

Our study further exemplifies that the model framework—especially urban CPM—holds great promise for
urban climate assessment with respect to other regions and other risks related to climate change. Espe-
cially, one should consider the (sub)tropic developing regions for which urban expansion and population
growth are expected to be much larger than in midlatitude developed regions [United Nations, 2014; Seto
et al., 2012]. Besides the heat stress assessment, the framework may also serve as a basis for assessing other
weather extremes and risks under climate change propagating to the city scales, especially urban-induced
precipitation [e.g., Han et al., 2014; Jin et al., 2015] and its consequences on urban flooding and (vector-borne)
diseases. Still, limitations of the current assessment need to be kept in mind with respect to the heat stress
quantification (Text S8.1), urban climate observations, modeling and projections (Text S8.2), and land use
modeling (Text S8.3). Especially, one should keep in mind that our study employs projected temperature
changes derived from ensemble GCM simulations, for which changes in the local (city-scale) feedbacks and
other meteorological variables for heat stress quantification are neglected. The challenges need to be tack-
led with new research directions and modeling techniques, which are discussed further in the supporting
information Text S8 [Mora et al., 2017; Leutwyler et al., 2016; Xu et al., 2016; Buzan et al., 2015; Hondula et al.,
2014; Wouters et al., 2013; Bohnenstengel et al., 2011; Barnett et al., 2010; Matzarakis et al., 2010; Epstein and
Moran, 2006].

5. Implications for Policy

Our study highlights that one requires combined measures of heat-resistance and sustainability against global
warming, especially in urban areas. Especially, the quantification of the different heat stress drivers under
climate change demonstrate that adaptation and mitigation strategies should come together:

1. From a global perspective, mitigating the global heat stress drivers requires drastic reduction of greenhouse
gas emissions in systems for energy, housing, industry, food, movables, and mobility.

2. From a regional perspective, one should prioritize those strategies that also mitigate the local drivers by
reducing the urban heat island effect. Particularly, the transformation of the urban areas into compact
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cities with a low-carbon infrastructure [Creutzig et al., 2016; Seto et al., 2010] (reducing the motorized traffic,
building energy consumption, and petrified footprint) will alleviate the heat stress increase not only from
greenhouse gas emissions but also that from urban expansion and anthropogenic heating.

3. From a local perspective, the future heat stress drivers highlight the need for targeted strategies in spa-
tial, organizational, behavioral, and technological climate adaptation [Hanna and Tait, 2015; Revi et al.,
2014; Georgescu et al., 2014] that enhance the cities’ resilience to a changing climate and attractiveness.
Such adaptation includes the integration of green open spaces and waterways in urban spatial planning,
water-sensitive urban design, and building adaptation [Demuzere et al., 2014; Coutts et al., 2012; Willems
etal., 2012].

Interdisciplinary research needs to pursue optimal pathways for future urbanization, for which heat-reducing
strategies apply to the multiple scales of climate change, on the one hand, and of policy making, on the other
hand. It is clear from our study that urban convection-permitting models should serve as a key tool.
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